
 

 1 

A Framework For The Development Of Distributed Simulation 
Code Oriented To The Manufacturing Field 

 
Antonio Grieco, Francesco Nucci, Massimo Pacella, and Alfredo Anglani 

Dipartimento di Ingegneria dell’Innovazione, Università degli Studi di Lecce, 
Via per Monteroni, 73100, Lecce - ITALY 

 
ABSTRACT 
Simulation models are becoming very complex 
software applications. This is mainly due to the 
increasing complexity of the analyzed systems 
composed by numerous groups of coordinated 
interacting elements. Nowadays simulation is shifting 
to a new paradigm: the DCC (Distributed Component 
Computing). The applications of this simulation 
paradigm are client/server running–programs using 
collaborating distributed components. These 
components can be located on different platforms 
under different operating systems, and heterogeneous 
simulation languages can be used to develop such 
components. In this paper, a framework for the 
integration of discrete event simulation components 
is presented. This framework is the focus of a 
research project whose aim is to design and develop 
an open-source distributed environment for the 
cooperation and integration of different simulation 
languages and tools. 
Keywords: Discrete event simulation, distributed 
component computing. 
 

1. INTRODUCTION 
Discrete event simulation theory is a well-known 
necessary and profitable design tool to support 
activities of systems configuration and management. 
Simulation is used in the optimization of the system 
as well as in the evaluation of its performance and in 
the designing of new configurations [1,2,3]. 

The growing complexity of simulation projects 
involves the increasing both of the required 
simulation devices, and the heterogeneity levels 
among them. To address this complexity, a redesign 
of the future simulation software has to be performed. 
Several works are studying the application of 
component–oriented paradigms to develop simulation 
models in the manufacturing field [4,5]. In particular, 
the work performed in the Object Management 
Group (OMG) led to the definition of the Computer 
Integrated Manufacturing (CIM) framework, which is 
a distributed component–oriented for the 
manufacturing environment [6]. 

Different studies investigated in distributed 
component computing for discrete event simulation 
theory. In [7] the major combined simulation 
languages are classified into six approaches. The 

approaches are useful for understanding the historical 
development and current direction of combined 
simulation modeling. In [8] the focus is the efficiency 
of simulation experimentation for optimization. A 
framework for combining the statistical efficiency of 
simulation optimization techniques with the 
effectiveness of parallel execution algorithms is 
presented. In [9], a new C++-based framework in 
order to integrate discrete event simulation models is 
proposed. In [10], the analysis of the performance of 
a specific distributed simulation environment based 
on DEVS/HLA (discrete event simulation 
specification/ high level architecture) is reported. A 
clock synchronization algorithm for parallel road-
traffic simulation is proposed in [11] 

A promising approach to re–design simulation 
applications is to adopt the Distributed Component 
Computing (DCC) paradigm in which monolithic 
software systems are being replaced by a collection 
of different components [12]. In particular, 
heterogeneousness is a valuable feature of the DCC 
paradigm. Theoretically, heterogeneity permits to use 
the best combination of hardware and software 
elements. In the simulation field, DCC paradigm 
allows the opportunity to use the most suitable 
simulation tool in order to model each specific part of 
the analyzed system. The DCC paradigm enables the 
developer to implement complex simulation models 
by simply connecting a set of simulation modules [4]. 

Even if the potential of the discrete event 
simulation are evident, (e. g. by considering the 
number of the commercial tools and languages 
available on the market implementing the different 
aspects of discrete event simulation), a little attention 
has been reserved by the academic research to the 
integration of different simulation languages and 
methodologies. 

In the last decade, in order different works 
focused on the combination of simulation models. 
For example, the High Level Architecture (HLA – 
IEEE standard 1516) [13] defines a framework that 
permits interactions among various simulation 
components. The aims of HLA are mainly to get an 
interoperability of the simulators and to reuse 
components over a large number of applications. 
HLA framework is able to establish the technical 
foundation for the combination of sub–models on the 



 

 2 

same planning level [14]. Nevertheless, HLA does 
not solve the problem arising when different 
simulation paradigms (e.g. object-oriented and 
transaction-oriented models) are coupled. For 
example, in the simulation of complex systems, the 
automatic cooperation among different simulation 
modules can be the way in which different languages 
and paradigms can be effectively integrated. 

The Italian Minister of Education and Research 
(MIUR) has recently founded a research project 
(2001-2005 prot. RBNE013SWE) within the 
Investment Fund for Basic Research (PNR 2001-
2003, FIRB art. 8, D.M. 199 Ric. 2001) concerning 
the designing and the developing of an open-source 
distributed environment for the cooperation and 
integration of different simulation languages and 
tools. 

The main proposal goal is to design and develop 
an open-source distributed environment for the 
cooperation and integration of different simulation 
languages and tools. The objective of the project is to 
develop an environment for the integration and 
collaboration of different tools and packages with a 
significant time reduction in the building and 
validation phases of complex distributed simulators. 

This paper presents a description and some 
preliminary results of such a project. In particular, the 
paper presents a General Simulation Framework 
(GSF) whose aim is describing each component 
produced during various designing/implementing 
phases. The environment definition for simulating 
complex systems requires to clearly identifying each 
activity occurring in the simulation model designing. 

The definition of the GSF is based on a specific 
approach providing a “general” abstract notation, 
which is domain-independent, along with specific 
concrete notations, one for each domain. The abstract 
notation is defined as a simulation-oriented “reuse” 
of UML (Unified Modeling Language). Domain-
specific notations are obtained by means of the 
customization facilities of UML in order to present 
the framework in a way suitable to the different 
domain experts. In this way, for each domain, it is 
possible to define a specific notation as a core 
transformation. Once such transformations are 
defined, users can work using their own notations, 
relaying on the core (hidden) notation to check and 
validate their models. 
 

2. THE PROJECT  
2.1 Project aims 
The integration of different simulators, based on 
different languages, may be the solution for the study 
of complex systems. For example, cooperation 
between different simulation languages allows users 
to simulate complex systems, in which each system 
component is simulated with a proper simulation 

language. Hence, it is possible to use closed software 
simulation units (that do not allow to identify 
implementation details) to be integrated within 
complex modeling scenarios. These units (i.e. black 
boxes) can reach high degree of detail. 

The aim of the project is to reduce costs, using 
existing simulators, while applying software 
engineering methods, as well as code re-usability and 
interoperability, within the modeling and simulation 
activities. 

The arising issues are of two classes: 
• Homogenous: dealing with the possibility to 

establish a tight connection between the system 
design phase and the simulation phase, in order 
to allow changes in the system design as a 
feedback from the following simulation activity. 
In other words, it is the possibility to have a 
homogeneous framework that drives the 
simulation phases (from the design activity to the 
actual simulation run) 

• Heterogeneous: dealing with the possibility to 
interconnect existing simulators, in case, 
developed using different languages or tools 
and/or hosted on different workstations 
connected by LAN/WAN networks. 
The second class is particularly important. 

Indeed, no unique monolithic simulator can 
completely fulfill the necessity to analyze complex 
heterogeneous real systems. This is valid especially 
when considering the simulation of systems 
characterized by a high degree of complexity. 
Relevant advantages can be achieved combining the 
results from several simulation blocks, each designed 
for a particular item of the overall system. 
Furthermore, the integration technique grants the 
possibility to exploit different simulation tools, each 
one chosen accordingly to the particular advantages 
that can be achieved. Hence, as new information 
technology tools are developed, several proposals for 
simulation support environment have been made, in 
which different components are. Therefore, an 
important role consists in the evaluation of the way 
these existing tools impact on such environments, in 
order to browse their capabilities and to test the 
feasibility of the interactions. 

The main proposal goal is to design and develop 
an open-source distributed environment for the 
cooperation and integration of different simulation 
languages and tools. The components integration will 
be based on general and dedicated standard software 
(in particular the Common Object Request Broker 
Architecture CORBA), and it will provide all the 
necessary specifications and tools for the integration 
of different simulators in a unique environment. By 
means of the new environment, it will be possible the 
integration and collaboration of different tools and 
packages with an evident time reduction in the 



 

 3 

building and validation phases of complex distributed 
simulators. Although, as demonstrated in the 
following, this is a very interesting academic research 
goal, the future consequences in the industrial field 
may be very promising. In fact, many companies 
provide black box simulation packages concerning 
manufactured system components to deal with 
industrial patents related, for example, with 
implementing details. Only by means of new 
distributed and collaborative environment, it will be 
possible to integrate different component in complex 
system simulation. 
2.2 Project structure 
Four Research Units (RUs) are involved in the 
project. 

The Research Unit of the University of Insubria 
Varese-Como is composed of Faculty members (Full 
Professors, Associate Professors and Researchers) 
and of personnel that will be hired for carrying out 
the activities foreseen in the project.  

The main expected goals (in cooperation with 
other units) are: 
1) the definition of the information model and of 

the reference architecture for the environment;  
2) the design and the implementation of the 

communication infrastructure for simulators;  
3) the design of the simulation sequence generator 

tool. 
The Research Unit of Politecnico di Milano is 

composed by 8 professors and 10 researchers and 
young researchers. Main objectives of the RU are the 
following. 
1) Definition of a descriptive model for 

representing real manufacturing systems. 
2) Definition of a descriptive model of the 

functioning of the manufacturing systems' 
simulation software model. 

3) Implementation of a standard language for the 
representation of management policies in the 
simulation of manufacturing plants. 

4) A specification of a production system, chosen 
as a case study, will be developed. The 
specification, written in UML and Trio, may be 
simplified but overall realistic and will be used 
for the simulation activities.  

5) A tool for execution sequence generation will be 
built and applied to the case study, in order to 
build and validate a simulation module. The 
developed tool will be portable, flexible, easy-to-
extend and to be easily interfaced with other 
tools. 
The research unit of the University of Calabria is 

established at the Department of Electronics, 
Informatics and System of the University of Calabria 
and collaborates with the Center of Excellence in 
High Performance Computing of the same 
University.  

The aim of the research activity of is the design 
and implementation of optimization methods for 
manufacturing systems. The validity of such methods 
will be tested by means of simulation. In the design 
of modern manufacturing systems, particular 
attention has to be devoted to the selection of the 
factors affecting costs and performance. These 
factors can be related to the configuration of the 
physical systems (e.g., number of machines, the 
choice between several machine or a flexible one) or 
can concern management parameters (storage 
policies, rules of dispatching, kanban number). 

The research unit of the University of Lecce is 
established at the Engineering for Innovation 
Department of the same University. The RU will be 
involved, in collaboration to the other participant 
RUs, on the development of every Work Packages. 
Nevertheless, the activities on which the RU of the 
University of Lecce will be mainly involved are the 
following ones. 
1) Analysis and development of frameworks and 

models for the manufacturing domain.  
2) Implementation of a development and 

management software environment for the 
distributed simulation.  

3) Implementation of software communication tools 
for the distributed simulation.  

4) Optimisation and management methods for 
resources and production policies in 
manufacturing environment by means of 
simulation.  

5) Methods and tools for the HLA and web services 
integration. 

 
3. THE ARCHITECTURE 

The project aims at designing and developing an 
open-source distributed environment for the co-
operation and integration of several simulation 
packages. The architecture is reported in Figure 1. 
The ORB module manages several Hw platforms, in 
case, by using Synchronous System Control (SSC) in 
order to endure temporal constrains [15] [16]. Time 
advance mechanism is a critical aspect in distributed 
simulation environments, because all the necessary 
simulation data have to be shared in a not-unique 
scenario. Furthermore, the temporal variable is a 
common data shared among all the simulation actors. 
For this reason the SSC play an essential role in the 
reported framework. Essentially, the GFS is based on 
three packages, namely: the System Framework, 
Simulation Framework and Deployment Framework 
(see Figure 2). The fundamental classes of the 
System Framework have been depicted by Figure 3. 
In practice, System Architecture can be considered as 
a hierarchical collection of Architectural Elements. 
The basic class of System Architecture is the Object 



 

 4 

representing a physical component of the real system 
to be modeled.  

The Simulation Framework package, depicted by 
Figure 4, reports the environment resources, which 
can be used for simulation. Each Simulator is hosted 
by specific software Platforms, running on a specific 
hardware system (HwPlatform). 

Finally, the Deployment Framework package 
(Figure 5) reports details of the simulation 
interfacing. In particular, each Simulation Element 
owns a proper Simulation Interface, which is based 
on a specific set of Simulation Gates. A Simulation 
Gates represents either the input (Simulation In Gate) 
or the output (Simulation Out Gate) exchange point 
for a specific Simulation Element. Two Simulation 
Gates might be connected by means of a Simulation 
Link in order to exchange input/output data. A 
special interface (Synchronous Simulation Interface) 

is designed for exchanging time data between 
Simulation Elements instead. 

Figure 6 shows an overall view of the proposed 
framework. It can be noticed that users implement 
both System Architecture and Subsystems, which 
consist of several Architectural Elements (e.g. a 
simulation Object). Practically, when two simulation 
modules have been located on different platforms, 
they can exchange data by means of the Simulation 
Gates. From the user viewpoint, a Simulation Gate is 
a particular module of the environment in order to 
link an external simulation component although it has 
been implemented in a different language on several 
platforms. Once the simulation components have 
been fully implemented in the specific language and 
located on the specific platforms, user models the 
overall simulation architecture by defining the links 
among the different simulator components. 

 

HW 
Platform 1

HW 
Platform 2

HW 
Platform n

ORB

Syncronous 
System ControlHW 

Platform i

 
Figure 1: UML deployment view for a generic distributed component simulation 

Sy stem Framework Simulation 
Framework

Deploy ment 
Framework

 
Figure 2: Main Packages Of Distributed Component Environment 



 

 5 

Object

ArchitecturalElementSystemArchitecture

1..*

+belongs

1..*

{ordered}

Subsystem
0..*0..1

+belongs

0..*

+contains

0..1

 
Figure 3: System Framework Package Details 

Addi tionalSoftwareHwPlatform
+hosts

Simulator

Platform

+contains

+hosted

 
Figure 4: Simulation Framework Package Details 

 

BaseSimElement

SimulationInGate SimulationOutGate

SimulationLink

0..1
+getFrom1

0..1

0..1

+sendTo1

0..1 Id

+sendToN

Id
0..1 +getFrom10..1

SynchronousSimulationInterface

SimulationGate

SimulationArchi tecture

SimulationInterface

0..1

+belongsTo

0..1Id

+gateN

Id

SimulationElement

1..*
+belongs

1..*

{ordered}

0..1

+belongsTo

0..1

Id
+interfaceN

Id

HierarchicalSimElement

1..*

1..1

1..*

1..1

contains

 
Figure 5: Deployment Framework Package Details 



 

 6 

Sy nchronousSimulationInterf ace
(f rom Simulation Framework)

BaseSimElement
(f rom Simulation Framework)

Platf orm
(f rom Deployment Framework)

Object
(f rom System Framework)

Simulator
(f rom Deployment Framework)

+hosted

1..*1..1 1..*1..1

contains

SimulationGate
(f rom Simulation Framework)

SimulationInterf ace
(f rom Simulation Framework)

0..1

+belongsTo

0..1
Id

+gateN

Id

SimulationArchitecture
(f rom Simulation Framework)

SimulationElement
(f rom Simulation Framework)

0..1

+belongsTo

0..1

Id
+interf aceN

Id

1..*

+belongs

1..*

{ordered}

ArchitecturalElement
(f rom System Framework)

+modeled
+modeler

Sy stemArchitecture
(f rom System Framework)

1..*1..*

+simulates

1..*

{ordered}

1..*

1..*

+belongs

1..*

{ordered}

Subsy stem
(f rom System Framework)

0..1

0..*

+contains

0..1

+belongs

0..*

User

1..*1..* 1..*1..*

Implements

1..*

1..*

1..*

1..*
Implements

 
Figure 6: Class Diagram Of The Distributed Component Environment 

 

4. SIMULATION FRAMEWORK 
IMPLEMENTATION 

This section provides a description of Simulation 
Framework implementation that has been developed 
in a common object-oriented language. The 
implemented Simulation Framework can be referred 
as DEOS (Discrete Event Object Simulation). DEOS 
has been implemented in order to supply a C++ class 
hierarchy able to provide a tangible support for the 
development of discrete event simulation models.  

The basic DEOS concepts - that have been 
developed in form of C++ class – are the timeline and 
the event. A simple framework has been created in 
which resources and entities of the simulation model 
can be described. 

The class hierarchy is basically based on three 
types: event handling, timeline handling and 
entity/resources handling. The TZSimulationEvent 
class is the base to perform event management (see 
Figure 7a). 

The handling of timeline consists in managing a 
priority queue containing scheduled events. The basic 
attribute for the extraction of a generic element from 
the queue is the occurring time. Fundamental classes 
for the timeline handling are reported in Figure 7b. 

Classes standing for entities and resources have a 
common parent in the class hierarchy: the 
TZSimulationObject class. This one represents a 

generic simulation object and it is linked to the 
Timeline through the correspondent events. 
TZSimulationObject child classes - TZEntity and 
TZResource - manage entities and resources (see 
Figure 7c). 

Moreover, class hierarchy is also made of 
support classes in order to manage special issues, 
such as simulation errors, statistical distribution 
properties, collection of simulation output, etc…. In 
order to use the above described hierarchy class, a 
visual framework is provided. In such a context it is 
possible to allocate and connect resources, set 
parameters, run simulations, watch and export 
simulation results. For this reason, special classes are 
developed (see Figure 8): TSimulationForm manages 
the graphical representation of the simulation model; 
TClassBox supplies a graphical representation of a 
resource (a box that can be moved or deleted - 
moreover class properties are available through it); 
TClassConnector connecting resources in order to 
establish simulation flows; TObjectInspector, for 
showing and setting class parameters. 

This architecture enables the programmer to 
develop new classes to be used in the simulation 
model building. A basic set of classes has been 
provided for building a variety of simulation models. 
TZCreator (TZDestroyer) simulates the creation 
(disposal) of an entity. TZMachine stands for a 



 

 7 

machine with one input, one output and a given 
processing time. TZBranch, depending on a fixed 
condition, put the input on one of the two available 
outputs. Instances of the described classes can be 
used in a simulation model by dragging the 
correspondent graphical elements on the desktop, 
linking them each other and setting their properties. 
An additional custom component can be used by: (1) 

creating the new class as a descendant of the 
TZResources, (2) implementing the management of 
the attributes during the simulation running, the 
statistical information concerning a simulation run, 
(3) linking the class with the special ones mentioned 
above. 
 

 

TZEndWorkEvent

Owner : *TZResource

TZEndWorkEvent( )

TZEndWorkEvent

Owner : *TZResource

TZEndWorkEvent( )

TZSimulationEvent

Name : AnsiString
Time : double

TZSimulationEvent( )
ProcessEvent( )

TZSimulationEvent

Name : AnsiString
Time : double

TZSimulationEvent( )
ProcessEvent( )

TZStartWorkEvent

Owner : *TZResource
Customer : *TZResource

TZEndWorkEvent( )

TZStartWorkEvent

Owner : *TZResource
Customer : *TZResource

TZEndWorkEvent( )

 
a) 

 
TZPriorityQueue

ListOfList

Insert( ) 
Pop( ) 
Push( ) 
Empty( )
TZPriorityQueue( )

TZPriorityQueue

ListOfList

Insert( ) 
Pop( ) 
Push( ) 
Empty( )
TZPriorityQueue( )

TZTimeline

ErrorString : AnsiString 
Error : int
Events : TZPriorityQueue
Time : double
TimeLimit : double

TZTimeline( )
~TZTimeline( )
Execute()
AddEvent( )
Terminate( )

TZTimeline

ErrorString : AnsiString 
Error : int
Events : TZPriorityQueue
Time : double
TimeLimit : double

TZTimeline( )
~TZTimeline( )
Execute()
AddEvent( )
Terminate( )  

b) 
 

 

TZEntity

Type : AnsiString
CreationTime : int

TZEntity( )

TZEntity

Type : AnsiString
CreationTime : int

TZEntity( )

TZSimulationObject

ClassType : AnsiString
Timeline : *TZTimeline

TZSimulationObject( )

TZSimulationObject

ClassType : AnsiString
Timeline : *TZTimeline

TZSimulationObject( )

TZResource

Name : AnsiString
Inputs : vector<TZResource *>
Outputs : vector<TZResource *> 
WorkDelayType : TWorkDelayType
Expression : AnsiString
NumberOfEntities : vector<double>
EndWorkingTime : double
WorkingTime : double
OccupationTimes : vector<TimeValue *>

Input( )
Output( )
GetOutput( ) 
Work( ) 
EndWork( )
WorkRequest( )
NextFree( )
TZResource( )
GetJobTime( )

TZResource

Name : AnsiString
Inputs : vector<TZResource *>
Outputs : vector<TZResource *> 
WorkDelayType : TWorkDelayType
Expression : AnsiString
NumberOfEntities : vector<double>
EndWorkingTime : double
WorkingTime : double
OccupationTimes : vector<TimeValue *>

Input( )
Output( )
GetOutput( ) 
Work( ) 
EndWork( )
WorkRequest( )
NextFree( )
TZResource( )
GetJobTime( )  

c) 

Figure 7: Fundamental Classes In DEOS 

TClassBoxTClassBox TObjectInspectorTObjectInspector

TClassConnectorTClassConnector TSimulationFormTSimulationForm

 
Figure 8: DEOS’s Visual Framework. 



 

 8 

 
5. CONCLUSIONS 

The project is actually in its designing phase. 
Afterwards, the framework that has been briefly 
described in the paper will be implemented in an 
open programming system environment by using 
general-purpose programming language (as C++ 
and/or Java). The integration of the simulation 
components will be achieved by implementing a suite 
of abstractions and of simulation services, which may 
be based on the distributed component platform 
technology CORBA. This will allow the integration 
system also to work within the Internet. Finally, the 
system will be tested in order to validate it as a 
distributed simulation environment for the 
manufacturing field. 
 
Acknowledgements: This research has been funded 
by Italian Minister of Education and Research 
(MIUR) whiting the project FIRB titled “Architetture 
e tecnologie informatiche per lo sviluppo ed 
evoluzione di software open-source per la 
simulazione a componenti distribuiti, orientate al 
settore manifatturiero” (2001-2005 prot. 
RBNE013SWE  PNR 2001-2003, FIRB art. 8, D.M. 
199 Ric. 2001). 
 

6. REFERENCES 
1. Kellert, P., Tchernev, N., and Force, C., “Object 

Oriented Methodology for FMS modelling and 
Simulation”, International Journal on Computer 
Integrated Manufacturing 2, no. 6, 1997 pp. 405-
434. 

2. Klein, U., “Simulation-based distributed 
systems: serving multiple purposes to 
composition of components”, Safety Science 35, 
2000, pp 29-39. 

3. Zhang, T., Dewey, A., Fair, R., “A hierarchical 
approach to stochastic discrete and continuous 
performance simulation using composable 
software components”, Microelectronics 
Journal, 31, 2000, pp 95-104. 

4. McArthur, K., Saiedian, H., and Zand, M., “An 
evaluation of the impact of component-based 
architectures on software reusability”. 
Information and Software Technology. 44, 2002, 
pp. 351-359. 

5. Maguire, L.P., MgGinnity, T.M., and McDaid 
L.J., “Issue in the development of an integrated 
environment for embedded system design. Part 
B: design and implementation” Microprocessor 
and Microsystems, 23, 1999, pp 199-206. 

6. CIM Framework Architecture Guide 1.0., 
available at http://www.sematech.org 

7. Yasser, D., and Chell,  R.A., “A review and 
classification of combined simulation”, 

Computers & Industrial Engineering, 32, no. 2, 
April, 1997, pp. 251-264  

8. Enver, Y., Yuh-Chuyn, L., Chun-Hung, C, and 
Insup, L., “Distributed web-based simulation 
experiments for optimization”, Simulation 
Practice and Theory 9, no. 1-2, October 15, 
2001, pp. 73-90.   

9. Gaujal, B., Jean-Marie, A., Mussi, P., and Siegel, 
G., “High speed simulation of discrete event 
systems by mixing process oriented and 
equational approaches”, Parallel Computing 23, 
no. 1-2, April, 1997, pp. 219-233   

10. Lee, J. S., and Zeigler, B. P., “Space-Based 
Communication Data Management in Scalable 
Distributed Simulation”, Journal of Parallel and 
Distributed Computing  62, no. 3, March 2002, 
pp. 336 – 365. 

11. Namekawa, M., Satoh, A., Mori, H., Yikai, K., 
and Nakanishi, T., “Clock synchronization 
algorithm for parallel road-traffic simulation 
system in a wide area” Mathematics and 
Computers in Simulation, 48, 1999, 351-359. 

12. Sheremetov., L. B., and Smirnov, A. V.,  
“Component integration framework for 
manufacturing systems re-engineering: agent and 
object approach”, Robotics and Autonomous 
Systems  27, 1999 (pp. 77-89). 

13. High Level Architecture. Available at 
https://www.dmso.mil/ public/ transition/ hla/, 
(September 2002). 

14. Wilcox, P. A., Burger, A. G., and Hoare, P., 
“Advanced distributed simulation: a review of 
developments and their implication for data 
collection and analysis”. Simulation Practice and 
Theory 8, 2000 (pp. 201-231). 

15. Grieco, A., Pacella, M., and Anglani,  A. 
“Integration of heterogeneous discrete event 
simulation tools by means of CORBA”, Annual 
conference of the Italian Society for Computer 
Simulation Proceedings, Naples (Italy) 
December 2001, pp. 61-69. 

16. Anglani A., Grieco, A., Pacella, M., and Colizzi, 
L., “A proposal of a distributed component 
environment for the integration of simulation 
models”, European Simulation Symposium (SCS-
ESS02) Proceedings, Dresden (Germany) 
October 2002, pp. 382-386. 


