
Modeling with DEOS

A. Grieco, S. Zacchino, L. Castelluzzo, D. Colı̀
Dipartimento di Ingegneria dell’Innovazione - Università degli Studi di Lecce

via Arnesano 73100 Lecce - telefono: 0832 297251 - e-mail: antonio.grieco@unile.it

Contents

1 The modeling approach 3
1.1 Mapping to DEOS model . 3
1.2 The simulation objects . 4
1.3 Time and event management . 5
1.4 Resource communication . 6
1.5 DEOS base resources . 7
1.6 Resource data acquisition . 10
1.7 Data acquirers . 10
1.8 Base data acquirers . 11

2 Creating new plugins 15
2.1 Plugins and plugin files . 15
2.2 Classes to specialize . 16
2.3 Creating resources . 18

2.3.1 Source files . 18
2.3.2 Plugin file code . 20
2.3.3 Main and graphic classes . 21
2.3.4 Logic class . 23
2.3.5 XML representation . 27

3 DEOS License 30
3.1 Adopted licenses . 30
3.2 Mozilla Public License 1.1 . 31
3.3 The Academic Free License v. 2.1 . 37

2

Chapter 1

The modeling approach

1.1 Mapping to DEOS model

The first step to create a simulation with DEOS is to represent systems in some object-oriented
notation as UML, in order to describe them correctly and to make easier the model creation. At
this stage, the most useful UML diagrams are:

• use case diagrams;

• activity diagrams.

Usually, they allow to find the system components, known as simulation objects, and reduce the risk
of mapping the real system to a wrong model.

Next step is to state which components are eligible to be resources or to be entities according
to DEOS model. DEOS was created to model manufacturing processes, but more generally it
is effective to represent systems in which entities migrate between complex components called
resources. Therefore, a component has to be mapped to a resource if its behaviour is to manipulate
other components. Instead, if the object is simply manipulated by other components, it is mapped
to an entity.

Figure 1.1: A simple queue system.

Figure 1.1 shows a simple use case diagram of a queue system where clients arrive and wait for
the server to be idle. The diagram evidences the components of the system: some clients, a queue
and a server. The server manifests a behavior by serving clients, so it will be mapped to a resource.
The queue keeps clients until the server can accept another one, so it will be mapped to a resource
too. The clients will be entities instead, because they are subject to server and queue actions.

3

1.2. The simulation objects 1. The modeling approach

Usually, the model needs some resources able to create the entities and to introduce them into
the system. These resources, often called creators, do not always have corresponding components
in the real world: they are only for the purpose of simulating the entry of entities into the system.
In the same way, the model needs some resources able to remove entities from the system. These
resources are called destroyers and are used to simulate the exit of entities. Other kinds of resources
can be lacking in real world counterparts, such as the switches that direct entities towards specific
directions.

The last step in planning a model is to draw the DEOS environment. This term refers to the set
of all resource instances involved in the model and their connections. To perform this last task
it’s required to find all comunication needs between resources and to decide the behavior and the
status of all simulation objects. The comunication include both information exchange and entity
passing. At this stage, the most useful UML diagrams are:

• sequence diagrams;

• state diagrams;

• class diagrams.

The previous example can be mapped to the environment shown in figure 1.2. The environ-
ment contains a creator that generates entities with given interarrival times. These entities go to
a queue and wait for server access. When the entities stop being served, they are removed by a
destroyer from the environment.

Figure 1.2: A simple environment.

When a model requires resources that do not already exist, a C++ or Tcl programmer must
create DEOS plugins1 representing these resources. He must give a form and a behavior to these
resources following the model planning.

The model can be simplified by using object aggregation. In other words, several resources
can be grouped in a single resource group which shows all properties and behaviors of the con-
tained resources. In this way, a complex environment can be shown as if it includes a few macro-
components instead of a lot of micro-components. Entity aggregation is quite different because
entity groups don’t exist, but the entities can be inserted in or extracted from any other entity and
the container entity doesn’t show the contained entity attributes. Entity aggregation is useful when
resources must exchange many entities at a time.

1.2 The simulation objects

Each resource and each entity can keep information about the component it represents. A part
or all of this information can be inspected from outside the simulation object. The visible part is

1see page 15

4

1.3. Time and event management 1. The modeling approach

accessible in form of attributes. An attribute is a simulation variable or parameter associated to a
simulation object and can be a double precision floating point number, a long integer or a string.
Resource attributes representing parameters for the simulation are said published because the user
can set them before starting the simulation.

DEOS allows to represent stochastic quantity through random variables associated to resources.
Users can set the distributions of the random variables before simulation starts and, during the
simulation execution, resources can get pseudo-random numbers with these distributions.

A resource can be equipped with input and output ports for communication purposes. Each
port is associated to its description and has an identification number in the range 1, 2, During
the environment composition the user can establish connections from an output port of a resource
to an input port of another one.

As said above, new resources are formed by programmers: they can add attributes, random
variables and I/O ports to a resource and make it use them. The user can only set already existing
resource properties by using an object inspector as in figure 1.3. The example above didn’t require
to create new resources because the DEOS base resources fitted our needs.

Figure 1.3: An object inspector.

1.3 Time and event management

A DEOS simulation can be viewed as a sequence of events. Each resource can ask the environ-
ment for scheduling an event in the present or in the future. The environment uses a timeline to
collect scheduling requests and to order them by time. It keeps the current simulation time in a
double precision floating-point variable which can be inspected by any resource. Every time an
event execution ends, the timeline searches for the next event to execute (that is the one with the
smallest execution time) and updates the current time variable. An environment is able to perform
a specified number of simulation runs by resetting its timeline and all resources at each simulation
end.

Programmers can associate event types to resources, besides the above properties. Each event
type can have a handler method that allows the resources to have a behavior. A resource schedules
only events belonging to its own event types and can disable future events, too. When the timeline
has to execute an event of a given event type, it calls the handler method for that event type.

5

1.4. Resource communication 1. The modeling approach

1.4 Resource communication

The connections between resource I/O ports are the channels through which resources ex-
change entities or information. A transfer protocol, called WGN2, allows two resources to start
and to complete an entity transfer. Both sending and receiving resource can take the initiative in
starting a transfer. The WGN protocol involves the following method calls:

Receiver.WorkRequest(InputNumber); This method informs the receiver that the sender has an
entity that is ready to be transferred. InputNumber keeps the input port identification number
involved in the connection.

Entity = Sender.GetOutput(OutputNumber); The receiver tries to get the entity through this
method. OutputNumber keeps the output port identification number involved in the connec-
tion.

Sender.NextFree(OutputNumber); The receiver can solicit the sender for preparing another en-
tity transfer by this method. OutputNumber is used as in the previous method.

Although the typical scenario is that shown in figure 1.4, the protocol doesn’t require to pre-
serve the call order, but each resource must be able to handle every call order, even only with an
error generation. This loose protocol definition allows to satisfy several comunication needs, but
requires that communication partner resources comply with the expectations of each other.

Figure 1.4: Typical entity transfer scenario.

Entity transfer is not the unique kind of communication between resources. Sometimes a re-
source has to get information from a partner resource attribute. There exist two methods that a
resource can use for this purpose:

Observed.GetCopyAttributeFromInput(InputNumber, Name, Copy); This method write into
Copy the content of the attribute with name Name. InputNumber keeps the input port identifi-
cation number involved in the connection.

2WorkRequest, GetOutput and NextFree.

6

1.5. DEOS base resources 1. The modeling approach

Observed.GetCopyAttributeFromOutput(OutputNumber, Name, Copy); The same syntax but
OutputNumber keeps the output port identification number involved in the connection.

1.5 DEOS base resources

The Base Plugins library contains some common base resources that are general enough to be
used in several contexts. These resources allow the user not to rewrite code for common tasks like
creating, routing, enqueuing and destroying entities. They can also be used as base for writing
new resources that share the same behaviour and properties. The list of the base resources is now
shown. Near some attribute names there is the “NP” acronym which stands for “not published”.
It means that these attributes are not shown in the object inspector as parameters, but can only be
used as simulation variables.

Branch Splits a flow of entities into two flows by using a probabilistic criterion.

Attributes:

• Wait for chosen output; if set to “Yes”, when next output is chosen, but corresponding output
resource is not free, entities will be not acquired. Otherwise, it doesn’t wait for chosen output,
but checks the other one and pushes next entity to it.

• Entities to output 1 (NP); the number of entities sent to the output 1.

• Entities to output 2 (NP); the number of entities sent to the output 2.

Random variables:

• Go to output 1; if computed value is not null, the output 1 will be chosen.

Event types:

• Dispatch; the moment when an entity passage happens from the input port to one of the output
ports.

Input ports:

• Input;

Output ports:

• Output 1;

• Output 2;

Creator Creates a given number of entities with a given temporal distribution. If the next resource doesn’t
get last created entity at a creation event, creator discards it and creates a new one.

Attributes:

• Create just on next free; if set to “Yes”, it only creates a new entity when NextFree method is called.
Otherwise, it uses the random variable “Creation interval” to compute the creation times.

• Create on start; if set to “Yes”, it creates a new entity on execution start, no matter what other
properties hold.

• Maximum of entities; if null, any number of entities can be created. Otherwise, it limits this
number.

• Created entities (NP); the number of entities created until now.

7

1.5. DEOS base resources 1. The modeling approach

• Discarded entities (NP); the number of entities discarded until now.

Random variables:

• Creation interval; the time between two creations.

Event types:

• Creation; the moment when an entity creation occurs.

• Discarding; the moment when an entity discarding occurs.

Output ports:

• Created entities exit;

Destroyer Destroys entering entities and shows their lifetime.

Attributes:

• Destroyed entities (NP); the number of entities destroyed until now.

• Last entity creation time (NP); the creation time of the last destroyed entity.

• Last entity lifetime (NP); the lifetime of the last destroyed entity.

Event types:

• Destruction; the moment when an entity destruction occurs.

Input ports:

• Destroyer entry;

Queue Enqueues entities waiting for next resource acquisition. The user sets the maximum amount of
entities, which may be infinite and the extraction policy, which may be FIFO or LIFO.

Attributes:

• Discipline; this attribute sets what kind of discipline the queue will obey. The two available
values are: “FIFO” and “LIFO”.

• Maximum length; if null, any number of entities can be holded in the queue. Otherwise, it sets
the maximum for this number.

• Number of entities (NP); the number of the entities that are currently in the queue.

Event types:

• Arrival to queue; the moment when the queue gets a new entities from the input port.

• Exit from queue; the moment when the queue sends an entity to a free output resource.

Input ports:

• Queue input;

Output ports:

• Queue output;

Server Emulates a server by holding an entity until the service time is expired. It can wait for a reset time
before starting a new service.

Attributes:

8

1.5. DEOS base resources 1. The modeling approach

• Free on next free; if set to “Yes”, the server waits for the call of the output resource method
NextFree before calling the input resource method NextFree. In other words, it claims to be idle
when the output resource does it.

• Last reset time (NP); the reset time after last service.
• Last service time (NP); self-explanatory.
• Processed entities (NP); the number of entities that have completed their service until now.

Random variables:

• Reset time; the time between the service end and the moment in which the server is ready to start
another service. Sometimes it is called “setup time”, too.

• Service time; the time between the service start and the service end.

Event types:

• Begin service; the moment when a service begins.
• End service; the moment when a service ends and a reset period starts.
• End reset; the moment when a reset period ends and the server is ready to get another entity.

Input ports:

• Input;

Output ports:

• Output;

Switch Gets entities from a given input and pushes them to a given output. It allows to specify the policy
used to choose the input port and the output port of the next entity transfer.

Attributes:

• Chosen input; the number of the input port from which entities will be acquired.
• Chosen output; the number of the output port to which entities will pushed.
• Input policy; it sets the way the switch chooses the input port to get entities. This can be: “Only

chosen input” to let “Chosen input” attribute decide, “Strict round robin” to get from the con-
nected input ports in a strictly one by one way, “Loose round robin” to get from whatever input
port and to serve concurrent requests with round robin algorithm, “With priority” to get from
whatever input port and to serve concurrent requests with priority, where the lesser is the port
number, the higher is its priority.

• Output policy; it sets the way the switch chooses the output port to push entities. This can be:
“Only chosen output” to let “Chosen output” attribute decide, “Strict round robin” to push to
the connected output ports in a strictly one by one way, “Loose round robin” to choose among
the free output resources with round robin algorithm, “With priority” to choose among the free
output resources with priority, where the lesser is the port number, the higher is its priority.

• Last served input (NP); the input port number involved in the last entity dispatch.
• Last used output (NP); the output port number involved in the last entity dispatch.

Event types:

• Dispatch; the moment when an entity dispatch happens.

Input ports:

• Input 1. . .16;

Output ports:

• Output 1. . .16;

9

1.6. Resource data acquisition 1. The modeling approach

1.6 Resource data acquisition

Resources show data to the whole environment by changing attribute values. The statistical
data can be computed by collecting those values at given times. Therefore, the project of a new
resource must take into account what variables the user will need. These variables should be kept
inside attributes to allow the environment to access them. For instance, when a destroyer removes
an entity from the environment, it writes the entity lifetime into the Last entity lifetime attribute,
because it may be a useful information for statistical purpose.

Besides the input attributes, whose values are to be collected, the user is interested in the mo-
ment in which the collection is performed. This time could be:

• an attribute change;

• an event execution;

• a computation of a statistical value;

• a simulation run end.

In DEOS notation this time is referred to as warner. It must be specified by the user together with
the attribute to collect. Attribute change is the most probable warner for attribute value collecting,
so that it is the default choice.

Sometimes, the source of information the user needs is the warner itself. For instance, one may
be interested in the simulation time of an event, in order to count its occurrences. Furthermore,
the warner can be associated to a value that could be useful when the warner arises. In this case
you can use a trigger, which is defined as a functional application warner → value. For instance,
to count the occurrences of an event, we have to set that event as the trigger warner and to let the
trigger value equal 1. This value will be added everytime the event arises.

1.7 Data acquirers

The user can put plugin instances that aren’t resources into environments, because they do not
participate in the simulation but only look at the simulation data. These plugins are referred to
as data acquirers. Their superclasses provide the programmers with interfaces and methods that
ease the task of creating new data acquirer plugins.

Figure 1.5 shows all data acquirer types. The first level specializations are monitor and gauge.
The latter is a plugin that employes acquired data to animate a graphical object during simulation
execution. The user can specify the attributes to use for animating graphic objects. For instance, a
progress bar like that in figure 1.6 is a simple gauge showing an input value as a bar length. Instead,
monitors don’t display any message during simulation runs, but use data for other purposes.

Monitors are further divided into two categories: stat collectors and controllers. Collecting data
and computing statistical indexes are the tasks of the stat collectors. The user can set the following
stat collector properties:

• reset data on simulation run end;

• the action that must be taken;

• the start time to begin collecting;

10

1.8. Base data acquirers 1. The modeling approach

Figure 1.5: Data acquirer types.

Figure 1.6: A progress bar showing a queue length.

• input attributes and warners;

• triggers.

Figure 1.7 shows the inspector that the user can employ to set the above properties.
Controllers are used to change resource attributes during the simulation execution when a con-

dition becomes true. They allows the user to exert a feedback on the system, based on simulation
variables. A controller needs to be set by its targets, which associate resource attributes to the
values that should be taken when the condition arises. Furthermore, controllers should be made
aware of the action to take and of some other properties depending on the action. Threshold is a
typical controller that evaluates its targets when an attribute exceeds a value. Figure 1.8 shows the
user interface to add target to a controller.

1.8 Base data acquirers

The list of the base data acquirers currently available in DEOS is now shown. Near the data
acquirer names there are acronyms which stand for: “SC” stat collector, “C” controller and “G”
gauge.

Collector (SC) collects attribute values and the times when they change. It’s possible to look at the values
on screen or to save them to a file.

Attributes:

11

1.8. Base data acquirers 1. The modeling approach

Figure 1.7: Stat collector inspector examples.

• Reset on new iteration; it allows to specify if collected data are deleted before starting every new
simulation run.

• Action; if set to “Collect”, it holds data into RAM. If set to “Save”, it save data in a file.

• Times; it allows to decide what to get: only values, values and collection times, only collection
times.

• Initial value; if set to “Collect it”, a collection will be performed at start time.

• File name; the file path where data will be saved.

Inputs:

• Value source; the source of the data to get.

Counter (SC) adds a value specified by a trigger to a variable initialized to zero.

Attributes:

• Reset on new iteration; it allows to specify if the sum is set to zero before starting every new
simulation run.

• Action; “Count” is the only available action.

Triggers:

• they allows to select the value to add for each specified warner;

Reporter (SC) reports information coming from inputs. It’s possible to specify a template text file for the
report.

Attributes:

• Reset on new iteration; useless.

• Action; “Report” is the only available action.

12

1.8. Base data acquirers 1. The modeling approach

Figure 1.8: A controller inspector.

• Template text file; the ASCII file that contains the report format. The final report is written by
replacing input tags with their corresponding values. Input tags are in the form: %F%N where
F is the C printf style format for floating point numbers and N is the input number. For instance,
%-7.0f%3 will be replaced with the input 3 value, left justified, in 7 characters padded with
blanks and without decimals. Only numeric attributes can currently be used. If no template file
is specified, the report will contain the current value of all connected inputs.

Inputs:

• Value source 1. . .128;

StatsMeasure (SC) performs statistical operation on attribute values. It can compute: mean, variance,
moment, temporal average value, minimum and maximum.

Attributes:

• Reset on new iteration; if set to “Yes”, all data are deleted before starting every new simulation
run.

• Action; there is an action for each of the above computations.

• Start time; the time when data collection must begin.

• Moment order; it specifies the moment order when “action” is set to “Moment”.

Inputs:

• Value source; the only availble input when computing temporal average value.

• Value source 1. . .16;

Expression (SC) computes numerical expressions that contain variables referring to the inputs, the simu-
lation time and the current iteration number. It recognizes the most common mathematical operators
and functions.

Attributes:

• Reset on new iteration; if set to “Yes”, all data are deleted before starting every new simulation
run.

• Action; “Evaluate” is the only available action.

• Start time; the time when data collection must begin.

13

1.8. Base data acquirers 1. The modeling approach

• Ignore warners; if set to “Yes”, the evaluation is not done when a warner arises, but when other
data acquirers ask for the current value. Otherwise, the evaluation only happens when a warner
arises.

• Expression; it is the expression to evaluate. Its format should be the C style format for numerical
expressions except for it is case insensitive. It recognizes the following variables: i as the current
iteration, time as the current simulation time, vi as the value coming from the i-th input. The
following operator can be used: +, −, ∗, / and ˆ. Furthermore, it recognizes the following
functions: sqr, log, ln, sin, cos, tan, asin, acos, atan, abs, int, hsin, hcos, htan and ispositive.
This last function returns 1 if the argument is ≥ 0.

Inputs:

• Value source 1. . .32;

Threshold (C) modifies a resource attribute when an input value matches a specific condition.

Attributes:

• Action; if set to “Assign”, it will set the target attribute. If set to “Sum” it will add to the target
attribute.

• Condition; the type of comparison between the input value and the comparing value.

• Comparing value; the right value of the comparison.

Inputs:

• Value to check; the source for the left values of the comparison.

Targets:

• They set the attribute to change and their target values.

ProgressBar (G) shows an attribute value as a bar length.

Attributes:

• Minimum; minimum value shown by the bar.

• Maximum; maximum value shown by the bar.

• Delay; after each graphical update the bar waits for a delay. This number is proportional to this
delay.

Inputs:

• Values source;

Tracer (G) executes a simulation one event at a time.

Attributes:

• Start time; the start time to trace events.

14

Chapter 2

Creating new plugins

2.1 Plugins and plugin files

A plugin is a piece of code that extends the capabilities of a program. Namely, a DEOS plugin is
like a class whose instances are employed by the user to build a simulation. For instance, the user
can add some instances of the Creator plugin to an environment and sets their properties. A DEOS
plugin may be:

• an environment;

• a resource;

• a data acquirer;

• a resource group.

At least three classes make a DEOS plugin:

Main class provides registry data like plugin name, instance local name, plugin type (resource,
stat collector, etc,) and plugin category. Next two classes can be acquired through the main
one. Usually, the name of this class begins with TD.

Logic class perfoms tasks related to the simulation. This class determines the resource properties
and behavior or the data acquirer capabilities, etc. Usually, the name of this class begins with
TDL.

Graphic class satisfies multimedia requirements. It provides an icon showing plugin instances on
the environment and all of the forms the plugin needs. Usually, the name of this class begins
with TDG.

A plugin file is an executable module1 that contains a library of plugins. There aren’t assump-
tions about the choice of the plugins to include in a plugin file. Each plugin file contains the code
for all of the plugin classes and for a proxy class. The task of the proxy class is to provide informa-
tion about the plugins that the file contains and to create new instances of them. The only symbol2

1A DLL in Windows and a shared object in Linux.
2The Windows/Borland version also needs to export the symbol SetApplication for form management purposes.

15

2.2. Classes to specialize 2. Creating new plugins

that the plugin file must export is a function GetProxy that returns a pointer to the plugin file
proxy.

Objects coming from different plugins must be handled by each other, but often the class defin-
ing an object is only known inside the scope of its plugin file. Therefore, the objects can’t access
each other through their defining class but using interfaces, which are known in the scope of any
plugin file. DEOS architecture uses pure abstract classes as interfaces and usually, interface names
have the suffix Interface. When the objects of a class are to be handled outside the scope of the
plugin file, this class must inherit an appropriate interface. For instance, the plugin file proxy class
must implement the interface TDProxyInterface.

2.2 Classes to specialize

Usually, a DEOS plugin developer can write his classes by specializing the plugin definition
classes. They are divided into base classes and interfaces. The base classes provide an API to access
useful facilities and can be exploited to reuse code that implements common tasks. For instance,
there are base classes implementing attributes, random variables and event types that fit the typical
needs. Furthermore, there is no need to rewrite the code that adds attributes, random variables
and event types to a resource everytime a new one is created, because all of these tasks can be
inherited from TDLResource.

As said above, interfaces state which methods can be accessed by objects that are outside the
scope of the plugin file. Each class playing a role in the DEOS architecture must comply with
an interface. Base classes themselves often inherit interfaces, as TDLResource does by implement-
ing TDLResourceInterface. DEOS plugin developers would better specialize base classes instead of
interfaces, because in this way they’d take advantage of the already hard tested code. In fact, inter-
faces don’t have any code, but only define methods. Tables 2.1 and 2.2 show the base classes that
a developer can use and specialize for different purposes.

Plugin type Base class Description
Resource TDResource Inheritable by resource main classes

TDLResource Inheritable by resource logic classes.
TDAttribute Used for attributes.
TDRandomVariable Used for random variables.
TDEventType Used for event types.
TDGResource Inheritable by resource graphic classes.

Stat collector TDStatsCollector Inheritable by stat collector main classes
TDLStatsCollector Inheritable by stat collector logic classes.
TDGStatsCollector Inheritable by stat collector graphic classes.

Controller TDController Inheritable by controller main classes
TDLController Inheritable by controller logic classes.
TDGController Inheritable by controller graphic classes.

Gauge TDGauge Inheritable by gauge main classes
TDLGauge Inheritable by gauge logic classes.

16

2.2. Classes to specialize 2. Creating new plugins

Plugin type Base class Description
TDGGauge Inheritable by gauge graphic classes.

Group TDGroup Used for the Standard Group main class.
TDLGroup Used for the Standard Group logic class.
TDGGroup Used for the Standard Group graphic class.

Environment TDEnvironment Used for the Standard Environment main class.
TDLEnvironment Used for the Standard Environment logic class.
TDEntity Used for entities.
TDTimeline Used for the Standard Environment timeline.
TDPriorityQueue Locally used for the event priority queue of the Standard

Environment timeline.
TDSimulationEvent Used for the Standard Environment events.
TDGEnvironment Used for the Standard Environment graphic class.
Others Platform dependent locally used classes for multimedia

purposes.

Table 2.1: Base classes useful for specific plugin types.

Base class Description
TDeosException Used for throwing exceptions caused by blocking errors during simulation

execution.
TDProxy Inheritable by proxy classes. The task to give information about the plugins

and to instance them gets easier by inheriting this class.
DHook Template used for holding and passing pointers to class methods that have the

form void Method(TDHookInterface *), where TDHookInterface is the inter-
face implemented by DHook itself. In DEOS notation, a hook is an instance of
this template.

DVector Template used for holding and passing pointer vectors. The pointers are in
the form T * where T is the template defining class.

TDStrings Used for holding and passing string vectors.

Table 2.2: Base classes useful in various cases.

For a complete treatment of the base classes, refer to the “DEOS API documentation”. How-
ever, let’s analyse some of them now.

TDLResource This abstract class provides facilities for the plugin developer like adding, accessing and
deleting attributes, random variables, event types, input ports and output ports. All the data managed
by this class is saved or loaded by its XML methods. The developer must always override the pure
virtual methods: WorkRequest and NextFree when deriving a class from this one. Furthermore, WGN
protocol methods of partner classes can be called by simply using internal methods designed for this.
For instance, to call the WorkRequest method of the resource connected to output 2, the right call is:
WorkRequestToOutput(2).

This class provides the resources with features that make them cooperates with other objects. For
instance, the resources are able to be grouped by a group plugin and to set published attributes to
their initial values when a simulation run starts.

TDAttribute This class implements an attribute. It can be viewed as a variable that has a name, a type, a
content and a range of correct values. When it belongs to a resource, it can be published or not. The
types currently supported are: “String”, “Integer” and “Double”. The attribute interface allows the
developer to set everyone of these properties.

17

2.3. Creating resources 2. Creating new plugins

Furthemore, the developer can add warnings to an attribute. A warning is a hook to a class method
that the attribute calls when its content changes. This is how the data acquirer warners work.

TDRandomVariable Class for random variables. The properties of a random variable are: a sequence
number, a distribution and related data. The sequence number can be an integer in [0, 15] and identi-
fies which of the uniformly distributed pseudo-random number sequence, generated by the environ-
ment, must be used.

The distribution currently supported are:

Fixed a constant Value with probability 1.

Uniform uniformly distributed in [LowerBound, UpperBound].

Normal normal with given Mean and Standard deviation.

Exponential negative exponential with given Mean.

Triangular triangular with given Minimum, Mode and Maximum.

Binary 1 with probability Success probability, otherwise 0.

Discrete discrete with a given Distribution data, which is a sequence of numbers v1 p1 v2 p2 . . . vn pn,
where vi occurs with probability pi/

∑
pi.

TDEventType Resources have an object of this class for each type of event they can schedule. An event
type can have: a name and an event function (also known as handler). This class provides the devel-
oper with methods that schedule and disable events, add and remove warnings and return informa-
tion about events. Every scheduled event is associated with an identification number through which
the event can be referred.

TDEntity Resources can ask the environemnt for generating entities. The standard environment instances
them by using this class. Its methods allow to add, modify and remove attributes, and to set aggrega-
tion relationship between entities.

TDeosException During a simulation run, if an unrecoverable error occurs, an exception should be
thrown. The standard environment catch exceptions of this class.

2.3 Creating resources

The most common case of plugin implementing is for creating new resources. This section
shows the steps to write the code for a new resource by using all of the facilities that base classes
allow. The reader should have a good C++ knowledge to understand the example code. Further-
more, we assume that the resource has already been designed in terms of behaviour, attributes,
random variables and event types3. Currently, graphic classes have only been written for the Win-
dows/Borland platform, so our graphic class example is only valid in this context.

2.3.1 Source files

Let’s suppose we have to create a resource named “Foo”, which will be contained in a plugin
file named “MyPluginFile.dll”. The base directory tree we need is that shown in figure 2.1, but in
the real case other directories may exist. The grayed zone is the one the developer must create,
whereas the rest of the directories should already exist. By convention, MyPluginFile directory is

3See page 3.

18

2.3. Creating resources 2. Creating new plugins

Figure 2.1: The directory tree to create the Foo plugin.

at the same level of PluginDef, which contains the plugin definition classes and of Plugins, which
is the destination of the plugin file. Table 2.3 shows what the MyPluginFile and its subdirectories
contain. These files will be better explained below.

Directory File Content
MyPluginFile MyPluginFileExport.cpp The symbols exported by the plugin file (GetProxy and

SetApplication).
ProxyMyPluginFile.h Declaration of the proxy class TDProxyMyPluginFile.
ProxyMyPluginFile.cpp Code for the proxy class. This file contains a description of

the “Foo” resource and the code to instance it.
MyPluginFile.bpr C++ Builder project file.

Foo DFoo.h Declaration of the main class TDFoo.
DFoo.cpp Code for TDFoo. Usually, this code assigns a name to the

plugin and instances the logic and graphic classes.
Graphic DGFoo.h Declaration of the graphic class TDGFoo.

DGFoo.cpp Code for TDGFoo. It provides the icon to represent the
plugin instances and eventually a window for specific set-
tings.

DGFoo.rc The definition for the bitmap file of the icon as DLL re-
source.

DFoo.bmp The bitmap file of the icon. Usually (80x60 pixels with 8
bit per pixel).

Logic DLFoo.h Declaration of the logic class TDLFoo.
DLFoo.cpp Code for TDLFoo. The behaviour and all of the other fea-

tures related to the model are implemented here.

Table 2.3: MyPluginFile and its subdirectories content.

To create a DLL project with C++ Builder you must select File → New → Other and choose
DLL Wizard from the New tab. Now, check C++ as source language and Use VCL. Save the unit as
MyPluginFileExport.cpp and the project as MyPluginFile.bpr. After this, select Project → Options, go
to the Directories/Conditionals tab and set Final output to “..\Plugins” to make the DLL available
to DEOS.

19

2.3. Creating resources 2. Creating new plugins

We advice to modify the following options: select Project → Options and to uncheck Use dy-
namic RTL from the Linker tab and Build with runtime packages from the Packages tab. Some-
times it’s necessary to add manually some static library to the project file: select Project → Edit
Option Source and let the LIBRARIES and SPARELIBS elements have an attribute value=”rtl.lib
vclx.lib vcl.lib”.

Furthermore, the linker needs some .lib and .obj files that are obtained by compiling the base
classes. Table 2.4 shows the complete list of these files. The files to include into the project depend
on the type of the new plugins.

Plugin type File
Resource Deos/PluginDef/Resource/Resource.lib
Stat collector Deos/PluginDef/StatsCollector/StatsCollector.lib
Controller Deos/PluginDef/Controller/Controller.lib
Gauge Deos/PluginDef/Gauge/Gauge.lib
Group Deos/PluginDef/Group/Group.lib
Environment Deos/PluginDef/Environment/Environment.lib
Any Deos/PluginDef/Exception/Exception.lib
Any Deos/PluginDef/Proxy/Proxy.lib
Any Deos/PluginDef/Vector/DStrings.obj

Table 2.4: Compiled files to include for different plugin types

2.3.2 Plugin file code

Let’s see the code for exporting symbols.
1 // MyPluginFileExport.cpp
2 #include <vcl.h>
3 #include <windows.h>
4 #pragma hdrstop
5 #include ”ProxyMyPluginFile.h”
6

7 extern ”C” declspec(dllexport) TDProxyInterface ∗GetProxy()
8 {
9 return new TDProxyMyPluginFile();

10 }
11

12 extern ”C” declspec(dllexport) void SetApplication(void ∗MainApp)
13 {
14 static TApplication ∗MainApplication = Application;
15

16 if (MainApp) Application = (TApplication ∗) MainApp;
17 else Application = MainApplication;
18 }

Lines 2 and 3 include the Visual Component Library and the Windows header files. Line 4 tells
the C++ Builder preprocessor to stop precompiling headers. Line 5 includes the proxy class header
file. The function definitions in lines 7 and 12 use the modifiers extern ”C” declspec (dllexport) to
tell the compiler that following symbols must be exported. Line 9 instances a proxy and returns it
to the caller. Lines 12-18 should always be the same, because they simply make the DLL instance
use the TApplication object of the main application.

20

2.3. Creating resources 2. Creating new plugins

The code for the proxy declaration and definition is shown now.

1 // ProxyMyPluginFile.h
2 #ifndef ProxyMyPluginFileH
3 #define ProxyMyPluginFileH
4

5 #include ”Foo/DFoo.h”
6 #include ”../PluginDef/Proxy/DProxy.h”
7

8 class TDProxyMyPluginFile : public TDProxy
9 {

10 public:
11 TDProxyMyPluginFile();
12 virtual TDPluginInterface ∗NewPluginInstance(const char ∗PluginName);
13 };
14

15 #endif

16 // ProxyMyPluginFile.cpp
17 #include ”ProxyMyPluginFile.h”
18

19 TDProxyMyPluginFile::TDProxyMyPluginFile()
20 {
21 AddPluginInfo(”Foo”, ”It’s a test resource.”,
22 ”Resource”, DGeneral);
23 }
24

25 TDPluginInterface ∗TDProxyMyPluginFile::NewPluginInstance(const char ∗PluginName)
26 {
27 if (string(PluginName) == ”Foo”) return new TDFoo();
28 return 0;
29 }

Lines 2 and 3 avoid multiple declarations. Lines 5 and 6 include the declaration of the TDFoo
class and of the base class TDProxy, respectively. Lines 8-13 declare the new proxy class peculiar to
our plugin file. Lines 19-23 define the proxy constructor which adds the following properties about
the plugin “Foo” to the proxy: name, description, plugin type (resource) and plugin category. The
last property is usually set to DGeneral and will be used for future extended plugins which will be
incompatible with the standard environment. Lines 25-29 define the NewPluginInstance method of
the proxy, which instances one of the plugins it contains.

2.3.3 Main and graphic classes

Usually, writing main and graphic classes of a resource is quite easy. They only require a few
lines of code to set the plugin name and icon. Let’s see the main class code of the “Foo” resource.

1 // DFoo.h
2 #ifndef DFooH
3 #define DFooH
4

5 #include ”Logic/DLFoo.h”
6 #include ”Graphic/DGFoo.h”
7 #include ”../PluginDef/Resource/DResource.h”

21

2.3. Creating resources 2. Creating new plugins

8

9 class TDFoo : public TDResource
10 {
11 public:
12 TDFoo();
13 virtual void Initialize ();
14 };
15

16 #endif

17 // DFoo.cpp
18 #include ”DFoo.h”
19

20 TDFoo::TDFoo()
21 {
22 MyName = ”Foo”;
23 }
24

25 void TDFoo::Initialize ()
26 {
27 if (! MyLogic) MyLogic = new TDLFoo(this);
28 if (! MyGraphic) MyGraphic = new TDGFoo(this);
29 }

Lines 5 and 6 include logic and graphic class declarations. Line 7 includes the declaration of
TDResource which should be a base class for any resource main class. Lines 9-14 declare the main
class TDFoo and the constructor line 22 sets the resource name. Lines 25-29 define the Initialize
method, which instances the graphic and the logic classes. This method is usually called by the
environment soon after the main class instantiation.

Now, let’s see the code of the graphic class TDGFoo.

1 // DGFoo.h
2 #ifndef DGFooH
3 #define DGFooH
4

5 #include ” ../../ PluginDef/Resource/Graphic/DGResource.h”
6

7 class TDGFoo : public TDGResource
8 {
9 public:

10 TDGFoo(TDPluginInterface ∗Plugin);
11 virtual HBITMAP GetBitmap();
12 virtual void ShowPersonalForm();
13 };
14

15 #endif

17 // DGFoo.cpp
18 #include ”DGFoo.h”
19

20 TDGFoo::TDGFoo(TDPluginInterface ∗Plugin) : TDGResource(Plugin)
21 {}
22

23 HBITMAP TDGFoo::GetBitmap()

22

2.3. Creating resources 2. Creating new plugins

24 {
25 if (! MyImage) return 0;
26 MyImage−>Bitmap−>LoadFromResourceName((unsigned int) HInstance, ”FOOBMP”);
27 return MyImage−>Bitmap−>Handle;
28 }
29

30 void TDGFoo::ShowPersonalForm()
31 {}

Line 5 includes the declaration of TDGResource, which should be the base class for any re-
source graphic class. Lines 7-13 declare the graphic class TDGFoo. The constructor at lines 20-21
doesn’t take any action, and this is the common case. The GetBitmap method at lines 23-28 tries
to load a bitmap into the TPicture object pointed by MyImage and to return the image handle. The
string ”FOOBMP” identifies a DLL resource defined in the resource file DGFoo.rc. This file, which
should be included into the project, has the following content:

FOOBMP BITMAP DISCARDABLE ”DFoo.bmp”

DFoo.bmp is the bitmap file holding the plugin icon.
Last DGFoo.cpp method ShowPersonalForm could be used to open a window called plugin dialog.

Usually, resources don’t need such a feature but this is useful for other plugin types. For instance,
a stat collector can show its result by opening this window.

2.3.4 Logic class

The greatest effort is usually made to write the logic class, because it describes the plugin
properties and above all, it implements the resource behaviour. The developer can save a lot of
lines of code by inheriting the base class TDLResource, which offers methods for common tasks of
resources.

Let’s suppose our resource “Foo” has this behaviour:

• it receives an entity from an input port;

• it adds an attribute holding a pseudo-random number to the entity;

• it tries to give out this entity through an output;

• if no resource acquires this entity, it stops receiving other ones.

Furthermore, let’s suppose “Foo” has the following properties:

Processed entities attribute that holds the number of processed entities.

Label value random variable that generates the numbers to put into the entity attributes.

Entity arrival event type that arises when “Foo” gets an entity.

Let’s see the declaration of the logic class of “Foo”.

1 // DLFoo.h
2 #ifndef DLFooH
3 #define DLFooH
4

23

2.3. Creating resources 2. Creating new plugins

5 #include ” ../../ PluginDef/Resource/Logic/DLResource.h”
6

7 class TDLFoo : public TDLResource
8 {
9 protected:

10 // Rapid accesses
11 TDAttribute ∗ProcessedEntities;
12 TDRandomVariable ∗LabelValue;
13 TDEventType ∗EntityArrival;
14

15 // Other Variables
16 bool SuspendedRequest, Ready;
17

18 // Event handlers
19 virtual void EntityArrivalHandler(TDHookInterface ∗AWarning);
20

21 public:
22 TDLFoo(TDPluginInterface ∗Plugin);
23 ˜TDLFoo();
24 virtual void DeleteYourself();
25

26 virtual void WorkRequest(unsigned int InputNumber);
27 virtual void NextFree(unsigned int OutputNumber);
28 virtual void Reset ();
29

30 virtual bool GetXmlStatus(TDXmlWriterInterface ∗AWriter);
31 virtual bool SetXmlStatus(TDXmlReaderInterface ∗AReader);
32 };
33

34 #endif

Lines 7-32 declare the logic class TDLFoo. Lines 11, 12 and 13 declare pointers for the prop-
erties that will be added. It’s not necessary to preserve these pointers because TDLResource does
it, but doing this we can access the properties faster. Line 16 declares two boolean flags which
are used into the code: Ready is set to false everytime “Foo” receives a WorkRequest and decides
to get next entity. It becomes true when the output resource call the NextFree method; Suspende-
dRequest is set to true everytime a WorkRequest call occurs and “Foo” is not able to process another
entity. When the NextFree method runs, it will check if there are suspended requests to process.
EntityArrivalHandler is the handler method for the event type “Entity arrival”.

Let’s see the code for the logic class of “Foo”.

35 // DLFoo.cpp
36 #include ”DLFoo.h”
37

38 TDLFoo::TDLFoo(TDPluginInterface ∗Plugin) : TDLResource(Plugin)
39 {
40 // Attributes ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41 ∗(ProcessedEntities = AddAttribute(”Processed entities”)) = 0L;
42 ProcessedEntities−>SetPublished(false);
43

44 // Random Variables ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
45 (LabelValue = AddRandomVariable(”Label value”))−>SetDistribution(”Fixed”);
46

24

2.3. Creating resources 2. Creating new plugins

47 // Event Types ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
48 (EntityArrival = AddEventType(”Entity arrival”))−>
49 SetEventFunction(new DHook<TDLFoo> (this, &TDLFoo::EntityArrivalHandler));
50

51 // Inputs ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
52 AddInput(”Input”);
53

54 // Outputs ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
55 AddOutput(”Output”);
56

57 // Initializations
58 SuspendedRequest = false;
59 Ready = true;
60 }

Lines 38-60 define the constructor. Line 41 adds an attribute named “Processed entities” and
sets it to 0. Line 42 makes the above attribute not published, that is it will be not shown in the object
inspector among the resource parameters. In fact, it is a simulation variable and is not a parameter.
Line 45 adds a random variable named “Label value” and sets its default distribution to “Fixed”.
Lines 48 and 49 add an event type and link it to its handler method. Lines 52 and 55 add an input
port named “Input” and an output port named “Output”, respectively. The enumerations of the
input ports and of the output ports start from 1 and increment by one at every adding, so the
“Input” port will be assigned to 1 and the “Output” port will be assigned to 1. Lines 58 and 59
initialize the flags.

61 TDLFoo::˜TDLFoo()
62 {}
63

64 void TDLFoo::DeleteYourself()
65 {
66 delete this ;
67 }

To delete an object that was instanced into another executable module, it’s not possible to use
the delete operator, because different modules have different memory managers. We have to invoke
the self deletion of the object, instead. This is achieved by calling the DeleteYourself method which
can safely do it.

68 void TDLFoo::WorkRequest(unsigned int InputNumber)
69 {
70 if (InputNumber == 0) return;
71 else if (InputNumber == 1)
72 {
73 if (! Ready || OutputEntities[0])
74 {
75 SuspendedRequest = true;
76 return;
77 }
78 EntityArrival−>ScheduleIn(0.0);
79 Ready = false;
80 }
81 else throw TDeosException(”Foo error: WorkRequest to a wrong input number”);
82 }

25

2.3. Creating resources 2. Creating new plugins

Lines 68-82 define the WorkRequest method. Line 70 checks if the choosen InputNumber is 0. This
particular value is used by the environment to call the WorkRequest methods of all the resources
and to tell them that the simulation is starting. If InputNumber is equal to 1, line 73 checks if the
resource is ready to process another entity. This line looks at the flag Ready and checks the output
buffer, too. This prevents the output resource from causing a crash by calling NextFree before
getting the entity. If the resource isn’t able to process another entity, it sets SuspendRequest to true
and returns (lines 75 and 76). Otherwise it schedules an “Entity arrival” event at this moment and
sets Ready to false (lines 78 and 79). If the InputNumber value is incorrect line 81 arises a simulation
error and stops the execution.

Note that the output buffer OutputEntities is defined in TDLResource as a vector of TDEntityIn-
terface pointers and that its i-th item holds the pointer to the entity directed to the output i + 1.

83 void TDLFoo::EntityArrivalHandler(TDHookInterface ∗AWarning)
84 {
85 TDAttributeInterface ∗aLabel;
86 double value;
87

88 if (OutputEntities[0])
89 throw TDeosException(”Foo error: output buffer contains an unexpected entity”);
90 OutputEntities[0] = GetEntityFromInput(1);
91 if (! OutputEntities[0])
92 throw TDeosException(”Foo error: impossible to get an entity from the input”);
93 OutputEntities[0]−>AddAttribute(”Label”);
94 aLabel = OutputEntities[0]−>GetAttribute(”Label”);
95 if (! aLabel)
96 throw TDeosException(”Foo error: impossible to add an attribute to the entity”);
97 LabelValue−>ComputeValue(value);
98 ∗aLabel = value;
99 ∗ProcessedEntities = (long) ∗ProcessedEntities + 1L;

100 WorkRequestToOutput(1);
101 }

Lines 83-101 define the handler method for the “Entity arrival” event. Note that the AWarning
parameter of this method holds the pointer to the hook that was assigned to the “Entity arrival”
event type. If a method is the handler of more than one event type, it can know what event occurs
by reading the hook pointer.

Lines 88 checks if the entity buffer is empty and if not, then line 89 arises a simulation error. It
should be empty because otherwise this event wouldn’t have been scheduled. However, checking
the output buffer before writing it, is a safe way to prevent entities from disappearing. Line 90 tries
to acquire an entity from input port 1. The method GetEntityFromInput is a TDLResource facility to
call the GetOutput method of an input resource. Line 91 checks if an entity was actually got and if
not, then line 92 arises a simulation error.

Line 93 tries to add an attribute named “Label” to the acquired entity. The AddAttribute method
returns the pointer to the new attribute if it was added. Instead, if an attribute with this name
already exists or if an error occurred, it returns a null pointer. To check if the attribute actually
exists, line 94 tries to acquire it through the GetAttribute method. If this attempt was unsuccessful,
line 96 arises an error.

Line 97 generates a pseudo-random number by using the ComputeValue method of the random
variable pointed by LabelValue. Line 98 lets the attribute “Label” be equal to this number. Line 99
increments the attribute “Processed entities” by one as long integer value. Line 100 tells the re-

26

2.3. Creating resources 2. Creating new plugins

source connected to the output port 1 that a new entity can be acquired. The WorkRequestToOutput
method is a TDLResource facility to call the WorkRequest method of an output resource.

102 void TDLFoo::NextFree(unsigned int OutputNumber)
103 {
104 Ready = true;
105 if (SuspendedRequest) WorkRequest(1);
106 }
107

108 void TDLFoo::Reset()
109 {
110 TDLResource::Reset();
111 ∗ProcessedEntities = 0L;
112 SuspendedRequest = false;
113 Ready = true;
114 }

Lines 102-106 define the NextFree method which is called by an output resource that claims its
availability. Line 104 sets the Ready flag to true to allow other entity acquisitions. Line 105 checks if
there has been a suspended request. The way to grant the request is by calling its own WorkRequest
method to pretend a request from outside.

Lines 108-114 define the Reset method which is called by the environment to reset the resource
status. Line 110 calls TDLResource version of the Reset method. This is always necessary to allow
resetting of all things managed by TDLResource. These things involve: deleting pending events
and emptying the output entity buffer. Next three lines set the flags and the attribute “Processed
entity” to the initial values.

This is the typical way to implement a resource that acts as a server. At line 78 in the WorkRe-
quest method, one can specify a non-null time to simulate a service time. This time could be com-
puted through a random variable to simulate the service randomness.

2.3.5 XML representation

A careful reader should be aware of a lack in the previous subsection: no definition for the
XML methods was shown. The “Foo” resource could actually work without any XML methods
during a simulation execution, but all tasks related to saving its status couldn’t be safely made. In
fact, the environment, which usually call this methods, couldn’t get and set the whole status of the
resource.

The XML methods, usually overridden, are GetXmlStatus and SetXmlStatus. The former is
called by the environment to get the status of the resource. The status has to be written by means
of a TDXmlWriter object, which is able to translate data to XML. The latter is called by the envi-
ronment to set the resource status to that holded by a TDXmlReader object. This object allows the
resource to browse into the XML description of its status.

Both methods return true on success and false on failure. Let’s see the code for the “Foo” XML
methods.

115 bool TDLFoo::GetXmlStatus(TDXmlWriterInterface ∗AWriter)
116 {
117 if (! TDLResource::GetXmlStatus(AWriter)) return false;
118 if (! AWriter−>AddElement(DFLAGS)) return false;
119 AWriter−>AddContent(SuspendedRequest);

27

2.3. Creating resources 2. Creating new plugins

120 AWriter−>AddContent(Ready);
121 return true ;
122 }

Lines 115-122 define the method GetXmlStatus. Line 117 calls the TDLResource version of this
method to allow it to write attributes and random variables. In fact, only new members declared
by the user should be written in the overridden methods. We only have to write the two flags
SuspendedRequest and Ready. Before doing this, line 118 tries to add an XML element that will
hold the two flags. DFLAGS is a constant holding the element name which is defined in “XmlEle-
mentNames.h”. Lines 119 and 120 add the flags to the XML element separating them by a blank
character. The method AddContent can add integer and floating point numbers, boolean values
and strings. Note that it is not prudent to add more than one string into a single XML element
because the string boundaries will be not preserved.

123 bool TDLFoo::SetXmlStatus(TDXmlReaderInterface ∗AReader)
124 {
125 if (! TDLResource::SetXmlStatus(AReader)) return false;
126 if (string(AReader−>GetElementName()) != DFLAGS) return false;
127 AReader−>GetItem(SuspendedRequest);
128 AReader−>GetItem(Ready);
129 AReader−>GoNext();
130 return true ;
131 }

Lines 123-131 define the method SetXmlStatus. Line 125 allows TDLResource to set self-managed
properties to the data holded by the TDXmlReader object pointed by AReader. When TDLRe-
source::SetXmlStatus returns, the object should be positioned on the first element after the last one
read. Line 126 checks the name of the current element. Lines 127 and 128 read the flags. GetItem
can read the same data AddContent can add, but in the string case, it only reads until a control
character (blank, carriage return, etc.) is met. To get the whole element content as a string, GetText
should be used instead. Line 129 moves the TDXmlReader object to the next element, if one exists.

Sometimes the data to write is more complex and requires browsing nested XML elements.
Both the XML reader and the XML writer provide method to do it. Table 2.5 shows these methods
and explains their use for both objects.

Method Writer use Reader use
Descend It is used before putting nested XML ele-

ments into the current element. It makes the
writer descend to a deeper nesting level be-
fore using the method AddElement.

It tries to descend to a deeper level than that
of the current XML element. If at least a
nested element exists, it moves the object on
it and returns true.

Ascend When all the nested elements of an element
are written, this method allows to return
to the higher level. Although allowed by
XML, the capability to add element content
after nested elements was not implemented.
Therefore, after going back from nested ele-
ments it is only possible to add another ele-
ment or to ascend again.

After reading all the nested elements of an
element, this method allows to return to the
higher level. The same notes of the writer
hold.

28

2.3. Creating resources 2. Creating new plugins

Method Writer use Reader use
GoNext Not used. It is used to move the reader to the next el-

ement at the same level. If no more element
exists it returns false.

Table 2.5: XML browsing methods.

When the data to write contains references to other simulation objects, GetXmlReferences and
SetXmlReferences should be used instead of GetXmlStatus and SetXmlStatus. In fact, they are called
by the environment when all of its plugins have already been instanced. This insures that all
references can be resolved. For instance, the following piece of code adds an entity to the object
pointed by AWriter. Since an entity could contain references, it’s safer to put this code into the
method GetXmlReferences.

1 if (! AWriter−>Descend()) return false;
2 if (AnEntity)
3 if (! AnEntity−>GetXmlStatus(AWriter)) return false;
4 if (! AWriter−>Ascend()) return false;

Note that lines 1 and 4 make the entity to add all of its XML elements as nested elements of
the current one. If these lines didn’t exist, the entity would have added all its elements after the
current one. Line 2 checks if the entity exists, and if not, it doesn’t write anything. The following
piece of code is able to read the data written with the previous one.

1 if (AReader−>Descend())
2 {
3 AnEntity = Environment−>GetNewEntity(0.0, 0L, ””);
4 if (! AnEntity−>SetXmlStatus(AReader)) return false;
5 if (! AReader−>Ascend()) return false;
6 }
7 if (! AReader−>GoNext()) return false;

Before reading data, line 1 checks if there are nested elements. Line 3 tells the environment to
instance a new entity and puts its pointer into AnEntity. Line 4 makes the entity set its status to
that specified by AReader. Line 5 returns to the wrapping element and finally, line 7 tries to go to
the next element. In this case a next element is expected, so if it doesn’t exist, this method returns
false.

29

Chapter 3

DEOS License

3.1 Adopted licenses

The Mozilla Public License Version 1.1 (MPL 1.1) applies to all of the files in Deos directory and
recursively in all subdirectories.

Furthermore, the files in the following subdirectories:

• PluginDef/

• PluginDef/Resource/

• PluginDef/Resource/Logic/

• PluginDef/Resource/Graphic/

• PluginDef/StatsCollector/

• PluginDef/StatsCollector/Logic/

• PluginDef/StatsCollector/Graphic/

• PluginDef/StatsCollector/Graphic/Plot

• PluginDef/Controller/

• PluginDef/Controller/Logic/

• PluginDef/Controller/Graphic/

• PluginDef/Gauge/

• PluginDef/Gauge/Logic/

• PluginDef/Gauge/Graphic/

• PluginDef/Exception/

• PluginDef/Hook/

• PluginDef/Plugin/

30

3.2. Mozilla Public License 1.1 3. DEOS License

• PluginDef/Proxy/

• PluginDef/Misc/

• PluginDef/Vector/

are also licensed under the terms of the Academic Public License Vesion 2.1 (AFL 2.1).

3.2 Mozilla Public License 1.1

1. Definitions.
1.0.1. ”Commercial Use” means distribution or otherwise making the Covered Code available

to a third party.
1.1. ”Contributor” means each entity that creates or contributes to the creation of Modifica-

tions.
1.2. ”Contributor Version” means the combination of the Original Code, prior Modifications

used by a Contributor, and the Modifications made by that particular Contributor.
1.3. ”Covered Code” means the Original Code or Modifications or the combination of the

Original Code and Modifications, in each case including portions thereof.
1.4. ”Electronic Distribution Mechanism” means a mechanism generally accepted in the soft-

ware development community for the electronic transfer of data.
1.5. ”Executable” means Covered Code in any form other than Source Code.
1.6. ”Initial Developer” means the individual or entity identified as the Initial Developer in the

Source Code notice required by Exhibit A.
1.7. ”Larger Work” means a work which combines Covered Code or portions thereof with code

not governed by the terms of this License.
1.8. ”License” means this document.
1.8.1. ”Licensable” means having the right to grant, to the maximum extent possible, whether

at the time of the initial grant or subsequently acquired, any and all of the rights conveyed herein.
1.9. ”Modifications” means any addition to or deletion from the substance or structure of either

the Original Code or any previous Modifications. When Covered Code is released as a series of
files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original Code or previous
Modifications.

B. Any new file that contains any part of the Original Code or previous Modifications.
1.10. ”Original Code” means Source Code of computer software code which is described in the

Source Code notice required by Exhibit A as Original Code, and which, at the time of its release
under this License is not already Covered Code governed by this License.

1.10.1. ”Patent Claims” means any patent claim(s), now owned or hereafter acquired, including
without limitation, method, process, and apparatus claims, in any patent Licensable by grantor.

1.11. ”Source Code” means the preferred form of the Covered Code for making modifications
to it, including all modules it contains, plus any associated interface definition files, scripts used
to control compilation and installation of an Executable, or source code differential comparisons
against either the Original Code or another well known, available Covered Code of the Contribu-

31

3.2. Mozilla Public License 1.1 3. DEOS License

tor’s choice. The Source Code can be in a compressed or archival form, provided the appropriate
decompression or de-archiving software is widely available for no charge.

1.12. ”You” (or ”Your”) means an individual or a legal entity exercising rights under, and
complying with all of the terms of, this License or a future version of this License issued under
Section 6.1. For legal entities, ”You” includes any entity which controls, is controlled by, or is
under common control with You. For purposes of this definition, ”control” means (a) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50

2. Source Code License. 2.1. The Initial Developer Grant. The Initial Developer hereby grants
You a world-wide, royalty-free, non-exclusive license, subject to third party intellectual property
claims: (a) under intellectual property rights (other than patent or trademark) Licensable by Initial
Developer to use, reproduce, modify, display, perform, sublicense and distribute the Original Code
(or portions thereof) with or without Modifications, and/or as part of a Larger Work; and

(b) under Patents Claims infringed by the making, using or selling of Original Code, to make,
have made, use, practice, sell, and offer for sale, and/or otherwise dispose of the Original Code
(or portions thereof).

(c) the licenses granted in this Section 2.1(a) and (b) are effective on the date Initial Developer
first distributes Original Code under the terms of this License.

(d) Notwithstanding Section 2.1(b) above, no patent license is granted: 1) for code that You
delete from the Original Code; 2) separate from the Original Code; or 3) for infringements caused
by: i) the modification of the Original Code or ii) the combination of the Original Code with other
software or devices.

2.2. Contributor Grant. Subject to third party intellectual property claims, each Contributor
hereby grants You a world-wide, royalty-free, non-exclusive license (a) under intellectual prop-
erty rights (other than patent or trademark) Licensable by Contributor, to use, reproduce, modify,
display, perform, sublicense and distribute the Modifications created by such Contributor (or por-
tions thereof) either on an unmodified basis, with other Modifications, as Covered Code and/or
as part of a Larger Work; and

(b) under Patent Claims infringed by the making, using, or selling of Modifications made by
that Contributor either alone and/or in combination with its Contributor Version (or portions of
such combination), to make, use, sell, offer for sale, have made, and/or otherwise dispose of: 1)
Modifications made by that Contributor (or portions thereof); and 2) the combination of Modifi-
cations made by that Contributor with its Contributor Version (or portions of such combination).

(c) the licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Contributor first
makes Commercial Use of the Covered Code.

(d) Notwithstanding Section 2.2(b) above, no patent license is granted: 1) for any code
that Contributor has deleted from the Contributor Version; 2) separate from the Contributor Ver-
sion; 3) for infringements caused by: i) third party modifications of Contributor Version or ii) the
combination of Modifications made by that Contributor with other software (except as part of the
Contributor Version) or other devices; or 4) under Patent Claims infringed by Covered Code in the
absence of Modifications made by that Contributor.

3. Distribution Obligations.
3.1. Application of License. The Modifications which You create or to which You contribute

are governed by the terms of this License, including without limitation Section 2.2. The Source

32

3.2. Mozilla Public License 1.1 3. DEOS License

Code version of Covered Code may be distributed only under the terms of this License or a future
version of this License released under Section 6.1, and You must include a copy of this License
with every copy of the Source Code You distribute. You may not offer or impose any terms on
any Source Code version that alters or restricts the applicable version of this License or the recipi-
ents’ rights hereunder. However, You may include an additional document offering the additional
rights described in Section 3.5.

3.2. Availability of Source Code. Any Modification which You create or to which You contribute
must be made available in Source Code form under the terms of this License either on the same
media as an Executable version or via an accepted Electronic Distribution Mechanism to anyone to
whom you made an Executable version available; and if made available via Electronic Distribution
Mechanism, must remain available for at least twelve (12) months after the date it initially became
available, or at least six (6) months after a subsequent version of that particular Modification has
been made available to such recipients. You are responsible for ensuring that the Source Code
version remains available even if the Electronic Distribution Mechanism is maintained by a third
party.

3.3. Description of Modifications. You must cause all Covered Code to which You contribute
to contain a file documenting the changes You made to create that Covered Code and the date of
any change. You must include a prominent statement that the Modification is derived, directly or
indirectly, from Original Code provided by the Initial Developer and including the name of the
Initial Developer in (a) the Source Code, and (b) in any notice in an Executable version or related
documentation in which You describe the origin or ownership of the Covered Code.

3.4. Intellectual Property Matters
(a) Third Party Claims. If Contributor has knowledge that a license under a third party’s in-

tellectual property rights is required to exercise the rights granted by such Contributor under
Sections 2.1 or 2.2, Contributor must include a text file with the Source Code distribution titled
”LEGAL” which describes the claim and the party making the claim in sufficient detail that a re-
cipient will know whom to contact. If Contributor obtains such knowledge after the Modification
is made available as described in Section 3.2, Contributor shall promptly modify the LEGAL file
in all copies Contributor makes available thereafter and shall take other steps (such as notifying
appropriate mailing lists or newsgroups) reasonably calculated to inform those who received the
Covered Code that new knowledge has been obtained.

(b) Contributor APIs. If Contributor’s Modifications include an application programming in-
terface and Contributor has knowledge of patent licenses which are reasonably necessary to im-
plement that API, Contributor must also include this information in the LEGAL file.

(c) Representations. Contributor represents that, except as disclosed pursuant to Sec-
tion 3.4(a) above, Contributor believes that Contributor’s Modifications are Contributor’s original
creation(s) and/or Contributor has sufficient rights to grant the rights conveyed by this License.

3.5. Required Notices. You must duplicate the notice in Exhibit A in each file of the Source
Code. If it is not possible to put such notice in a particular Source Code file due to its structure,
then You must include such notice in a location (such as a relevant directory) where a user would
be likely to look for such a notice. If You created one or more Modification(s) You may add your
name as a Contributor to the notice described in Exhibit A. You must also duplicate this License in
any documentation for the Source Code where You describe recipients’ rights or ownership rights
relating to Covered Code. You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered Code. However, You may
do so only on Your own behalf, and not on behalf of the Initial Developer or any Contributor. You

33

3.2. Mozilla Public License 1.1 3. DEOS License

must make it absolutely clear than any such warranty, support, indemnity or liability obligation is
offered by You alone, and You hereby agree to indemnify the Initial Developer and every Contrib-
utor for any liability incurred by the Initial Developer or such Contributor as a result of warranty,
support, indemnity or liability terms You offer.

3.6. Distribution of Executable Versions. You may distribute Covered Code in Executable form
only if the requirements of Section 3.1-3.5 have been met for that Covered Code, and if You include
a notice stating that the Source Code version of the Covered Code is available under the terms of
this License, including a description of how and where You have fulfilled the obligations of Section
3.2. The notice must be conspicuously included in any notice in an Executable version, related
documentation or collateral in which You describe recipients’ rights relating to the Covered Code.
You may distribute the Executable version of Covered Code or ownership rights under a license
of Your choice, which may contain terms different from this License, provided that You are in
compliance with the terms of this License and that the license for the Executable version does not
attempt to limit or alter the recipient’s rights in the Source Code version from the rights set forth
in this License. If You distribute the Executable version under a different license You must make
it absolutely clear that any terms which differ from this License are offered by You alone, not by
the Initial Developer or any Contributor. You hereby agree to indemnify the Initial Developer and
every Contributor for any liability incurred by the Initial Developer or such Contributor as a result
of any such terms You offer.

3.7. Larger Works. You may create a Larger Work by combining Covered Code with other
code not governed by the terms of this License and distribute the Larger Work as a single product.
In such a case, You must make sure the requirements of this License are fulfilled for the Covered
Code.

4. Inability to Comply Due to Statute or Regulation. If it is impossible for You to comply
with any of the terms of this License with respect to some or all of the Covered Code due to
statute, judicial order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code they affect. Such
description must be included in the LEGAL file described in Section 3.4 and must be included with
all distributions of the Source Code. Except to the extent prohibited by statute or regulation, such
description must be sufficiently detailed for a recipient of ordinary skill to be able to understand
it. 5. Application of this License. This License applies to code to which the Initial Developer has
attached the notice in Exhibit A and to related Covered Code. 6. Versions of the License. 6.1.
New Versions. Netscape Communications Corporation (”Netscape”) may publish revised and/or
new versions of the License from time to time. Each version will be given a distinguishing version
number.

6.2. Effect of New Versions. Once Covered Code has been published under a particular ver-
sion of the License, You may always continue to use it under the terms of that version. You may
also choose to use such Covered Code under the terms of any subsequent version of the License
published by Netscape. No one other than Netscape has the right to modify the terms applicable
to Covered Code created under this License.

6.3. Derivative Works. If You create or use a modified version of this License (which you
may only do in order to apply it to code which is not already Covered Code governed by this Li-
cense), You must (a) rename Your license so that the phrases ”Mozilla”, ”MOZILLAPL”, ”MOZPL”,
”Netscape”, ”MPL”, ”NPL” or any confusingly similar phrase do not appear in your license (ex-
cept to note that your license differs from this License) and (b) otherwise make it clear that Your
version of the license contains terms which differ from the Mozilla Public License and Netscape

34

3.2. Mozilla Public License 1.1 3. DEOS License

Public License. (Filling in the name of the Initial Developer, Original Code or Contributor in the
notice described in Exhibit A shall not of themselves be deemed to be modifications of this Li-
cense.)

7. DISCLAIMER OF WARRANTY. COVERED CODE IS PROVIDED UNDER THIS LICENSE
ON AN ”AS IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS
FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED CODE IS
WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU
(NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF
ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS
AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER. 8. TERMINATION. 8.1. This
License and the rights granted hereunder will terminate automatically if You fail to comply with
terms herein and fail to cure such breach within 30 days of becoming aware of the breach. All
sublicenses to the Covered Code which are properly granted shall survive any termination of this
License. Provisions which, by their nature, must remain in effect beyond the termination of this
License shall survive.

8.2. If You initiate litigation by asserting a patent infringement claim (excluding declatory
judgment actions) against Initial Developer or a Contributor (the Initial Developer or Contributor
against whom You file such action is referred to as ”Participant”) alleging that:

(a) such Participant’s Contributor Version directly or indirectly infringes any patent, then any
and all rights granted by such Participant to You under Sections 2.1 and/or 2.2 of this License
shall, upon 60 days notice from Participant terminate prospectively, unless if within 60 days after
receipt of notice You either: (i) agree in writing to pay Participant a mutually agreeable reasonable
royalty for Your past and future use of Modifications made by such Participant, or (ii) withdraw
Your litigation claim with respect to the Contributor Version against such Participant. If within
60 days of notice, a reasonable royalty and payment arrangement are not mutually agreed upon
in writing by the parties or the litigation claim is not withdrawn, the rights granted by Participant
to You under Sections 2.1 and/or 2.2 automatically terminate at the expiration of the 60 day notice
period specified above.

(b) any software, hardware, or device, other than such Participant’s Contributor Version, di-
rectly or indirectly infringes any patent, then any rights granted to You by such Participant under
Sections 2.1(b) and 2.2(b) are revoked effective as of the date You first made, used, sold, distributed,
or had made, Modifications made by that Participant.

8.3. If You assert a patent infringement claim against Participant alleging that such Partici-
pant’s Contributor Version directly or indirectly infringes any patent where such claim is resolved
(such as by license or settlement) prior to the initiation of patent infringement litigation, then the
reasonable value of the licenses granted by such Participant under Sections 2.1 or 2.2 shall be taken
into account in determining the amount or value of any payment or license.

8.4. In the event of termination under Sections 8.1 or 8.2 above, all end user license agreements
(excluding distributors and resellers) which have been validly granted by You or any distributor
hereunder prior to termination shall survive termination.

9. LIMITATION OF LIABILITY. UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
THEORY, WHETHER TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL
YOU, THE INITIAL DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF

35

3.2. Mozilla Public License 1.1 3. DEOS License

COVERED CODE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PER-
SON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOOD-
WILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL
OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY
SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY RESULTING FROM
SUCH PARTY’S NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIM-
ITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION
MAY NOT APPLY TO YOU. 10. U.S. GOVERNMENT END USERS. The Covered Code is a ”com-
mercial item,” as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of ”commercial
computer software” and ”commercial computer software documentation,” as such terms are used
in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Code with only those
rights set forth herein. 11. MISCELLANEOUS. This License represents the complete agreement
concerning subject matter hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it enforceable. This License shall
be governed by California law provisions (except to the extent applicable law, if any, provides
otherwise), excluding its conflict-of-law provisions. With respect to disputes in which at least one
party is a citizen of, or an entity chartered or registered to do business in the United States of Amer-
ica, any litigation relating to this License shall be subject to the jurisdiction of the Federal Courts
of the Northern District of California, with venue lying in Santa Clara County, California, with the
losing party responsible for costs, including without limitation, court costs and reasonable attor-
neys’ fees and expenses. The application of the United Nations Convention on Contracts for the
International Sale of Goods is expressly excluded. Any law or regulation which provides that the
language of a contract shall be construed against the drafter shall not apply to this License. 12.
RESPONSIBILITY FOR CLAIMS. As between Initial Developer and the Contributors, each party
is responsible for claims and damages arising, directly or indirectly, out of its utilization of rights
under this License and You agree to work with Initial Developer and Contributors to distribute
such responsibility on an equitable basis. Nothing herein is intended or shall be deemed to consti-
tute any admission of liability. 13. MULTIPLE-LICENSED CODE. Initial Developer may designate
portions of the Covered Code as Multiple-Licensed. Multiple-Licensed means that the Initial De-
veloper permits you to utilize portions of the Covered Code under Your choice of the NPL or the
alternative licenses, if any, specified by the Initial Developer in the file described in Exhibit A.

EXHIBIT A -Mozilla Public License.
“The contents of this file are subject to the Mozilla Public License Version 1.1 (the ”License”);

you may not use this file except in compliance with the License. You may obtain a copy of the
License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an ”AS IS” basis, WITHOUT WAR-
RANTY OF ANY KIND, either express or implied. See the License for the specificlanguage gov-
erning rights and limitations under the License.

The Original Code is DEOS code.
The Initial Developer of the Original Code is Università degli Studi di Lecce. Portions created

by the Initial Developer are Copyright (C) 2004 the Initial Developer. All Rights Reserved.
Contributor(s): .

36

3.3. The Academic Free License v. 2.1 3. DEOS License

Alternatively, the contents of this file may be used under the terms of the license (the [] Li-
cense), in which case the provisions of [] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [] License and not to allow
others to use your version of this file under the MPL, indicate your decision by deleting the provi-
sions above and replace them with the notice and other provisions required by the [] License. If
you do not delete the provisions above, a recipient may use your version of this file under either
the MPL or the [] License.”

[NOTE: The text of this Exhibit A may differ slightly from the text of the notices in the Source
Code files of the Original Code. You should use the text of this Exhibit A rather than the text found
in the Original Code Source Code for Your Modifications.]

3.3 The Academic Free License v. 2.1

This Academic Free License (the ”License”) applies to any original work of authorship (the
”Original Work”) whose owner (the ”Licensor”) has placed the following notice immediately fol-
lowing the copyright notice for the Original Work:

Licensed under the Academic Free License version 2.1
1) Grant of Copyright License. Licensor hereby grants You a world-wide, royalty-free, non-

exclusive, perpetual, sublicenseable license to do the following:
a) to reproduce the Original Work in copies;
b) to prepare derivative works (”Derivative Works”) based upon the Original Work;
c) to distribute copies of the Original Work and Derivative Works to the public;
d) to perform the Original Work publicly; and
e) to display the Original Work publicly.
2) Grant of Patent License. Licensor hereby grants You a world-wide, royalty-free, non-exclusive,

perpetual, sublicenseable license, under patent claims owned or controlled by the Licensor that are
embodied in the Original Work as furnished by the Licensor, to make, use, sell and offer for sale
the Original Work and Derivative Works.

3) Grant of Source Code License. The term ”Source Code” means the preferred form of the
Original Work for making modifications to it and all available documentation describing how to
modify the Original Work. Licensor hereby agrees to provide a machine-readable copy of the
Source Code of the Original Work along with each copy of the Original Work that Licensor dis-
tributes. Licensor reserves the right to satisfy this obligation by placing a machine-readable copy
of the Source Code in an information repository reasonably calculated to permit inexpensive and
convenient access by You for as long as Licensor continues to distribute the Original Work, and
by publishing the address of that information repository in a notice immediately following the
copyright notice that applies to the Original Work.

4) Exclusions From License Grant. Neither the names of Licensor, nor the names of any contrib-
utors to the Original Work, nor any of their trademarks or service marks, may be used to endorse
or promote products derived from this Original Work without express prior written permission
of the Licensor. Nothing in this License shall be deemed to grant any rights to trademarks, copy-
rights, patents, trade secrets or any other intellectual property of Licensor except as expressly
stated herein. No patent license is granted to make, use, sell or offer to sell embodiments of any
patent claims other than the licensed claims defined in Section 2. No right is granted to the trade-
marks of Licensor even if such marks are included in the Original Work. Nothing in this License

37

3.3. The Academic Free License v. 2.1 3. DEOS License

shall be interpreted to prohibit Licensor from licensing under different terms from this License any
Original Work that Licensor otherwise would have a right to license.

5) This section intentionally omitted.
6) Attribution Rights. You must retain, in the Source Code of any Derivative Works that You

create, all copyright, patent or trademark notices from the Source Code of the Original Work,
as well as any notices of licensing and any descriptive text identified therein as an ”Attribution
Notice.” You must cause the Source Code for any Derivative Works that You create to carry a
prominent Attribution Notice reasonably calculated to inform recipients that You have modified
the Original Work.

7) Warranty of Provenance and Disclaimer of Warranty. Licensor warrants that the copyright
in and to the Original Work and the patent rights granted herein by Licensor are owned by the
Licensor or are sublicensed to You under the terms of this License with the permission of the con-
tributor(s) of those copyrights and patent rights. Except as expressly stated in the immediately
proceeding sentence, the Original Work is provided under this License on an ”AS IS” BASIS and
WITHOUT WARRANTY, either express or implied, including, without limitation, the warranties
of NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY OF THE ORIGINAL WORK IS WITH YOU. This DIS-
CLAIMER OF WARRANTY constitutes an essential part of this License. No license to Original
Work is granted hereunder except under this disclaimer.

8) Limitation of Liability. Under no circumstances and under no legal theory, whether in tort
(including negligence), contract, or otherwise, shall the Licensor be liable to any person for any
direct, indirect, special, incidental, or consequential damages of any character arising as a result
of this License or the use of the Original Work including, without limitation, damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses. This limitation of liability shall not apply to liability for death or personal
injury resulting from Licensor’s negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages,
so this exclusion and limitation may not apply to You.

9) Acceptance and Termination. If You distribute copies of the Original Work or a Derivative
Work, You must make a reasonable effort under the circumstances to obtain the express assent of
recipients to the terms of this License. Nothing else but this License (or another written agreement
between Licensor and You) grants You permission to create Derivative Works based upon the
Original Work or to exercise any of the rights granted in Section 1 herein, and any attempt to do
so except under the terms of this License (or another written agreement between Licensor and
You) is expressly prohibited by U.S. copyright law, the equivalent laws of other countries, and by
international treaty. Therefore, by exercising any of the rights granted to You in Section 1 herein,
You indicate Your acceptance of this License and all of its terms and conditions.

10) Termination for Patent Action. This License shall terminate automatically and You may no
longer exercise any of the rights granted to You by this License as of the date You commence an
action, including a cross-claim or counterclaim, against Licensor or any licensee alleging that the
Original Work infringes a patent. This termination provision shall not apply for an action alleging
patent infringement by combinations of the Original Work with other software or hardware.

11) Jurisdiction, Venue and Governing Law. Any action or suit relating to this License may
be brought only in the courts of a jurisdiction wherein the Licensor resides or in which Licensor
conducts its primary business, and under the laws of that jurisdiction excluding its conflict-of-law
provisions. The application of the United Nations Convention on Contracts for the International

38

3.3. The Academic Free License v. 2.1 3. DEOS License

Sale of Goods is expressly excluded. Any use of the Original Work outside the scope of this License
or after its termination shall be subject to the requirements and penalties of the U.S. Copyright
Act, 17 U.S.C. Â§ 101 et seq., the equivalent laws of other countries, and international treaty. This
section shall survive the termination of this License.

12) Attorneys Fees. In any action to enforce the terms of this License or seeking damages
relating thereto, the prevailing party shall be entitled to recover its costs and expenses, including,
without limitation, reasonable attorneys’ fees and costs incurred in connection with such action,
including any appeal of such action. This section shall survive the termination of this License.

13) Miscellaneous. This License represents the complete agreement concerning the subject mat-
ter hereof. If any provision of this License is held to be unenforceable, such provision shall be
reformed only to the extent necessary to make it enforceable.

14) Definition of ”You” in This License. ”You” throughout this License, whether in upper or
lower case, means an individual or a legal entity exercising rights under, and complying with all
of the terms of, this License. For legal entities, ”You” includes any entity that controls, is controlled
by, or is under common control with you. For purposes of this definition, ”control” means (i) the
power, direct or indirect, to cause the direction or management of such entity, whether by contract
or otherwise, or (ii) ownership of fifty percent (50

15) Right to Use. You may use the Original Work in all ways not otherwise restricted or condi-
tioned by this License or by law, and Licensor promises not to interfere with or be responsible for
such uses by You.

This license is Copyright (C) 2003-2004 Lawrence E. Rosen. All rights reserved. Permission is
hereby granted to copy and distribute this license without modification. This license may not be
modified without the express written permission of its copyright owner.

39

Bibliography

[1] Narayanan, A. et al., “Research in Object-Oriented Manufacturing Simulations: An Assess-
ment of the State of the Art.” IIE Transactions, 1998

40

