
DEOS: a new object-oriented simulation environment.
A validation study.

A. Anglani, P. Caricato, A. Grieco, F. Nucci, M. Pacella
Dipartimento di Ingegneria dell’Innovazione - Università degli Studi di Lecce

Via per Arnesano, Lecce, 73100 Italy, e-mail: antonio.grieco@unile.it

Abstract
Simulation is a widely used technique for
modelling manufacturing and other types of
complex systems. Software packages, including
both general-purpose and specialised environments
designed to simulate manufacturing systems, have
increased the popularity of simulation. Object-
Oriented approach offers significant potential over
existing common process-oriented simulation
software. In this paper, a new object-oriented
discrete event simulation environment, DEOS, is
presented and examined. The paper proves the
reliability and credibility of the software tool by
means of a comparison to a diffused and accredited
simulation package such as ARENA. A simple job
shop system has been adopted as test case, and both
DEOS and ARENA models have been realised. A
statistical validation method based on seven
performance measures compared using the analysis
of variance ANOVA has been adopted.

1. Introduction
Due to the rapid advance in computer technology,
simulation has emerged as a significant tool for
modelling manufacturing and other types of
systems in modern industries. Various software
packages, including both general-purpose
simulation and specialised packages designed to
simulate manufacturing systems, have been
developed. Essentially, they consist of a collection
of functions and procedures accessed trough high-
level constructs. The use of high-level constructs
allows a more natural modelling phase of a system
than the one obtained with traditional general-
purpose programming languages. The validity of
these languages is proved by various applications
available in literature [1,2]. Nevertheless, these
packages commonly referred as process-oriented,
have their drawbacks. Since their abstractions are
suitable to represent only independent entity flows
among processes, they lack flexibility and are
inadequate to model a co-ordinated behaviour
among different components. In general, it is
broadly established that traditional process-oriented
programming methodologies are not convenient to
cope with flexible, maintainable and complex
software.
Object Oriented (O-O) programming has proved to
be a powerful technique with respect to modelling
and design of complex systems and it offers

significant potentials over other popular simulation
language in several respects [3]. The O-O approach
has advantages connected with handling
complexity, reusability, extendibility, modularity,
and data abstraction, which enables it to manage
software requirements more effectively than
traditional programming approaches. Promoting
reuse of software blocks and shortening the
software development time-cycle are particularly
significant features of the O-O technique.
An object-oriented approach is particularly
promising for the development of simulation
software. Although commercial and academic O-O
simulation systems have recently emerged, such as
SIMPLE++ (by AESOP [4]) and MODSIM (by
CACI [5]), a new environment named DEOS
(Discrete Event Object Simulator) is proposed in
this work. The aim of the presented environment is
to provide a research environment for O-O design,
analysis, and management of complex systems.
The features of the proposed environment are
basically different from the mentioned commercial
tools.
Since DEOS consists in a pure message-passing
environment it allows an easy modelling of the co-
ordinated behaviour among different components.
Moreover, DEOS combines interactive simulation
model design, object manipulation, simulation and
output analysis to provide an intuitive modelling
capability. The aim of the new environment is to
allow the user to easily design simulation model by
means of two main features.
• The first concerns software maintenance:

visual code is simpler and easier to interpret.
• The second is relative to software

modifications: a new layout simulation requires
only inserting additional objects into the
system and specifying the new relationships
among them.

Simulators on the market do not support a simple
and direct message passing modelling. For
example in SIMAN [6], a SCAN block, that checks
conditions, and a SIGNAL block, that can activate
the WAIT block are provided. This simulator,
however, does not use any message passing among
objects but global variables that can be directly
accessed in any simulation flow. In this paradigm,
models (i.e. sequence of SIMAN blocks) can
become so interdependent that a small change has a
massive ripple effect. Moreover, MODSIM, one of

the object-oriented simulation languages available
on the market, since all parts of message-passing
architecture should be designed and implemented
by the user, the construction of its models can be
somewhat overloaded.
This paper is organised as follows. In section 2 the
main DEOS features are presented. Section 3
reports the DEOS simulation framework. In section
4, a case study is illustrated while, in section 5, the
statistical validation is conducted. Concluding
remarks are provided in section 6.

2. DEOS features
DEOS is a new discrete–event simulation tool
intended for the simulation of systems with
complicated logic (in particular manufacturing
systems). DEOS provides a window-based object-
oriented design tool implemented using Borland
C++ Builder. Its features are quickly available
trough a tool bar containing seven items: “Classes”,
“Connector”, “Start Simulation”, “Stop
Simulation”, “View Report”, “View Objector
Inspector” and “View Chart Graph”.
DEOS contains many utilities to easily conduct a
simulation study. These capabilities include:
• Model design: the simulator layout is realised

using the “Classes”, “Connector” and “View
Object Inspector” menus.

• Execution: performed using the “Start
Simulation” and “Stop Simulation” items.

• Output analysis: performed using the “View
Report” and the “View Chart Graph” items.

In DEOS, the definition of a simulation model
includes two steps. The first step is to define the

scheme, which implies the definition of all the
objects involved in the simulation (including
servers, queues et.) and the relationships among
them. The second step consists in defining the
experiment through the definition of the individual
characteristics of each type of object. The logical
separation between scheme and experiment
increases the reusability of the scheme and the
coverage of modelling capability (this means that
the system can be used to build very complex
simulation models).
However, in DEOS, the above mentioned division
does not exist from the user-interface point of view,
whereas ARENA presents a separation between
model and experiment blocks. To build the model
the user takes the necessary components and places
them on the form. It is possible to set the properties
of DEOS objects and to describe their behaviour
just by double-clicking on each of them. This
feature allows a more rapid systems design, and
facilitates detailed and complicated modelling
without a large amount of different blocks to be
compiled.
DEOS environment is intended for GUI (Graphical
User Interface) design. It allows the user to easily
design and change the simulation model through
menus and dialog box (see Fig. 1). To build the
model the user just selects necessary objects from
“Classes” menu and places them on the form. In
the developed release, the “Classes” menu contains
five major elements: “Creator”, “Destroyer”,
“Queue”, “Incrementator” (i.e. server), and
“Branch”.
Once a scheme is built up, the characteristics of
each element can be defined. By using the “View
Object Inspector” functionality, the user can set

Fig. 1 - The DEOS Design Window

directly its properties. Relationships among objects
can be established using the “Connector” function.
Using other components, the user can easily
implement the input of parameters and the output of
simulation results in any possible way. Such
combination creates a very flexible and productive
framework for developing powerful simulation
applications.
From the programming point of view, it is very
important to notice that DEOS is library-based; this
implies that customisation and further upgrade can
be simply achieved by reusing and extending the
already existing code. The main advantage consists
in the possibility to improve the potentiality of any
block by overloading the correspondent object
methods in the given class code. In this way
simulation model designers can add additional
block features by using the same block interface.
For example, additional management policies can
be added to a queue block without placing other
ARENA modules in the model definition code. This
greatly improves the usability and maintainability
of the designed model.
Finally, in the summary report, the machine process
time, the maximum queued, the count of each entity
type and other statistical information collected can
be seen. The interpretation of the coefficient of
mean, standard deviation, total entry number, can
help formulating conclusions about the modelled
system. For each object, all performance measures
can be exported in ASCII format file for further
study.

3. The simulation system
The simulation system is designed by means of
object-oriented approach. The main idea of DEOS
modelling is that a simulation model formalisation
may be realised as an oriented graph with the
nodes, corresponding to some processing objects
(such as creators, queues, machines etc.). The arcs
of the graph correspond to connections among
objects. These connections establish relations
among different objects in terms of entity flows.
During the simulation process, entities (i.e. objects)
are passed from one block to another. By using
components methods, properties and events, it is
possible to control the behaviour of the model and
obtain the necessary statistical results.
The main simulation algorithm deals with states
and events of blocks. Transactions are generated,
moved and terminated during different operations
with blocks. The main cycle of the simulation
algorithm scans the system calendar (the timeline).
Items of the list are ordered by time. Each item of
the timeline stores the address of the transaction
and the block. Each scanning of the timeline means
getting the first item, changing the model time, and
executing all possible transaction passes. When
transaction goes from one block to another, (i.e. an

entity passes from on object to another), the
simulation manager executes the programmed
delays. In this way based event-oriented framework
the user can describe the behaviour of the model.

4. The case study
As an example, a typical job shop system has been
selected. It reproduces a job shop system
consisting of 3 machines, 3 queue-buffers and 2
part types (see Fig. 2). In intervals of normal
distribution two “Creator” objects introduce entities
of two part types into the model: type one (two) for
the entities produced by Creator1 (Creator2). These
entities come into a queue buffer - Queue1 - then
into a machine for processing - MachineA. Once a
normally distributed processing time has been
performed, the entities go to “Branch” which routes
them into two different queue-machine systems
depending on the part type (Queue2-MachineB for
type 1 and Queue3-MachineC for type 2). A
normally distributed length time models the service
time, then the entities go to the “Destroyer” block
and are terminated. Queues capacity is infinite and
the maximum number of elements introduced into
the model is set to 500 for both part types. Seven
performance output measures of the DEOS
simulation model have been compared using the
ANOVA analysis of variance over 15 replications
to the analogous measures obtained from the same
model developed using ARENA (see Fig.3 and Fig.
4). Both applications have been executed on a PC
equipped with CPU Pentium III-500Mhz, 128 Mb
RAM. The processing time for “Machine” and the
inter-arrival of the “Creator” objects are shown in
Table 1.

Object Distribution
MachineA Normal(6,1)
MachineB Normal(13,2)
MachineC Normal(12,1.5)
Creator1 Normal(10,1)
Creator2 Normal(8,1)

Table 1 - Processing and inter-arrival times

Negative values inferred from the normal
distribution for interval and delay, are automatically
set to zero.
The following list reports the seven performance-
measures that have been compared.
• Average number of elements in queue, applied

to Queue1, Queue2, Queue3;
• Average saturation level, applied to MachineA,

MachineB, MachineC;
• Simulation Time

•
•

Fig. 2 - DEOS Model for the case study

Fig. 3 - ARENA Experiment for the case study

Fig. 4 - ARENA Model for the case study

5. Statistical validation
The primary purpose of the experimental design
consists in performing a statistical validation of the
DEOS developed model. Validation is defined as
the activity to determine whether a simulation
model is an accurate reproduction of the real system
under study or not [7,8]. In the realised experiment,
the real system is represented by the ARENA
model. The well-known ANOVA one-way test has
been adopted over seven-performance output [9].
Analysis of variance extends the two-sample t-test
for testing the equality of two population means to
a more general null hypothesis of comparing the
equality of two or more means, versus them not all
being equal (at confidence level α). Since we are
studying a set of multiple responses, a statistical
complication arises: the probability of rejecting a
null-hypothesis increases as the number of
responses increases (say R), even if the simulation
model is correct. This property follows from the
definition of the Type I or α error of a statistical
test. A simple solution is based on the Bonferroni’s
inequality. Traditionally the Fo value is compared
with Fα(m,n), which denotes the critical value taken
from the table for the F statistic with m numerator
degree of freedom and n denominator degree of
freedom, Type I error probability fixed at α. Using
Bonferroni’s inequality, the analysts merely
replaces α by α/R.
A one-way analysis of variance is adopted with a
global confidence level αfam = 0.05. Using the
Bonferroni’s inequality, the α level for each of the
seven tests (α is equal in each test) is set to 0.05/7 =
0.007. The critical value for each of the statistical
tests is F0.007(1,28)=8.4713.
The ANOVA test results are reported in Table 2
(see Appendix). The ANOVA test assumes
independent distributed simulation responses and
normal residual with homogeneity of variance.
Since F for each test is less than the critical value
F0.007(1,28) it is possible to conclude there is no
statistical evidence showing that the performance
measures obtained from DEOS model are different
from the analogues performance measures inferred
from ARENA.
Therefore, experimental results show that there is
not statistical evidence to reject the null hypothesis
that DEOS provides the same simulation results
provided by ARENA. Finally, it appears that
DEOS environment outperforms a traditional
process-oriented language in terms of software
maintainability, reusability and flexibility,
providing, at the same time, accurate simulation
results as those ones obtainable with a traditional
and proved package as ARENA.

6. Conclusions
In this paper, a new object oriented simulation
environment is briefly described and applied to a
job shop case study. The new object oriented
environment has been presented at the user level.
Moreover, the validity of the proposed environment
has been proved by means of a simple case study.
In particular, two simulation models have been
developed. The former using SIMAN-ARENA
language, the latter using DEOS. Experimental
results prove the credibility of the proposed
environment.
The main advantages of the presented environment
are:
1. flexibility due to the precise modelling rules as

well as to the object-oriented and data-driven
implementation;

2. suitability for modelling processes of storing
and distributing, due to model components
with specific data structures;

3. carefully elaborated user interface.

An open field for the future system development is
animation. User interface will be upgraded by
process animation in order to see the model
execution. Further efforts should be done in order
to allow the user to construct a detailed graphical
representation of the system to be modelled. A
dynamic view of model execution can provide
valuable insights into model behaviour that are not
easily obtained by examining statistical results.

Acknowledgement
This work has been partially funded by Ministero
dell'Università e della Ricerca Scientifica e
Tecnologica MURST, the National Research
Council of Italy CNR.

References
[1] V. Hlupic, R.J. Paul, Guidelines for Selection

of Manufacturing Simulation Software, IIE
Transaction, vol. 31 (1999), 21-29.

[2] R. D. Macredie and R. J. Paul, Simulation
modelling in manufacturing system design: an
overview, International Journal of
Manufacturing System Design, vol. 2, n. 3,
(1995), 233-247.

[3] G. Booch, Object-Oriented Analysis and
Design with Application (Benjamin /
Cummings 1994).

[4] Aesop GmbH, SIMPLE++ reference manual,
(Aesop GmbH Stuttgart).

[5] CACI Products, MODSIM, The Language for
Object-Oriented Programming Reference
Manual, (CACI Products 1992).

[6] C.D. Pegden, R.E. Shannon, R.P. Sadowski,
Introduction to Simulation Using SIMAN,
(McGraw-Hill, 1995).

[7] J.P.C. Kleijnen, Statistical Validation of
Simulation Models, European Journal of
Operational Research, vol. 87, (1995), 21-34.

[8] J.P.C. Kleijnen, Verification and Validation of
Simulation models, European Journal of
Operational Research, vol. 82, (1995), 145-
162.

[9] D.C. Montgomery, Introduction to Statistical
Quality Control, (3rd ed. New York: Wiley,
1996).

Appendix

Analysis of Variance for Queue1
Source DF SS MS F P
Environm 1 25.64 25.64 2.96 0.097
Error 28 242.94 8.68
Total 29 268.58

Analysis of Variance for Queue2
Source DF SS MS F P
Environm 1 0.080 0.080 0.64 0.430
Error 28 3.516 0.126
Total 29 3.596

Analysis of Variance for Queue3
Source DF SS MS F P
Environm 1 0.05 0.05 0.01 0.925
Error 28 161.20 5.76
Total 29 161.25

Analysis of Variance for MachineA
Source DF SS MS F P
Environm 1 0.039 0.039 0.16 0.693
Error 28 6.874 0.245
Total 29 6.913

Analysis of Variance for MachineB
Source DF SS MS F P
Environm 1 0.585 0.585 1.15 0.292
Error 28 14.204 0.507
Total 29 14.790

Analysis of Variance for MachineC
Source DF SS MS F P
Environm 1 0.032 0.032 0.05 0.819
Error 28 16.878 0.603
Total 29 16.910

Analysis of Variance for SimTime
Source DF SS MS F P
Environm 1 21 21 0.01 0.907
Error 28 43542 1555
Total 29 43564

Table 2 - ANOVA tables for each test obtained with MINITAB.

