
DEOS – A Discrete Event Object-oriented Simulation
Environment

A. Anglani, P. Caricato, A. Grieco, F. Nucci, M. Pacella
Dipartimento di Ingegneria dell’Innovazione Università degli Studi di Lecce

Via per Arnesano, Lecce, 73100 Italy, e-mail: antonio.grieco@unile.it

Abstract
After many years of development and after being
used in many different fields, the traditional
process-oriented simulation paradigm has shown all
of its strengths and weaknesses. Although a wide
success has been reached, which has led benefits to
simulation theory and application in general,
process-oriented simulation has shown several
limits as well.
Many efforts have been made in order to apply the
successful concepts of object-oriented analysis and
design [Boo94] to simulation theory, especially in
commercial products such as ModSim® [Cac92]
and Simple++® [Aes]. Free Open Source
[Pav99][Cub97] tools are also available, but only in
very specific fields of application such as network
design [Omn]. None of these products, anyway, can
be regarded as a complete and general purpose
framework that allows analysts to model real-world
cases applying all of OOA concepts. Furthermore,
none of them supports designers with ease-of-use
and user-friendliness.
DEOS (Discrete Event Object-oriented Simulator)
is a first step in the direction of realizing such a
framework. It is based on a specifically designed
class library that provides the underlying
architecture needed to develop the entire simulation
environment. A design tool is also provided,
exploiting this architecture in order to provide the
designer with a powerful and user-friendly
modeling framework.

1. Introduction
Process-oriented modeling can be very effective
and useful in many cases, but it is not flexible at all.
Once a business or manufacturing activity has been
modeled [Hlu99][Mac95][Peg95], it is often very
expensive to modify this model in order to simulate
a slightly different model (e.g. either different
layouts or work policies). In some cases it can be as
expensive as re-modeling the entire activity.
DEOS (Discrete Event Object-oriented Simulation)
is a complete discrete event object-oriented
simulation environment designed considering two
main aspects:
• ease-of-use, in order to provide designers with

a visual, user-friendly simulation tool
• extensibility, to enable experienced developers

to take advantage of DEOS class library when

building specific objects needed in certain
disciplines

Hence, DEOS is aimed at two different kinds of
user, providing each of them with different tools
and facilities. DEOS is aimed at designers,
providing them with a user-friendly object-oriented
modeling and simulation tool. DEOS is also aimed
at developers, providing them with a complete and
powerful class library needed to enable them to
build new classes to be painlessly used within the
simulation tool in order to model real-world objects
involved in the activity under analysis.
DEOS provides a complete framework to support
designers to easily build their own simulation
models, visually combining and connecting
different pre-built customizable blocks.
Furthermore, DEOS is an Open Source object-
oriented software; hence it supports developers in
building their own “new” blocks that make use of
the class library provided in order to co-operate
with other objects during the simulation without
having to manage simulation issues such as
synchronization, events, message passing. This is
accomplished by the DEOS class library and can be
easily exploited using a standard and well-known
language such as C++.

2. The Design Tool
Unlike traditional process-oriented simulation tools,
the object-oriented paradigm allows designers to
model a system through the objects that it contains
rather than the processes taking place within the
system. With such an object-oriented approach,
every possible process is automatically modeled
when each object has been modeled.
The DEOS simulation software takes advantage of
the object oriented approach and of the newest
advances in operating systems and user-interface
technologies.
Each object involved in the model of a system is
represented by a “box” and each box is associated
with an “Object Inspector” (see Fig. 1), i.e. a
window that lists all the properties (referred as
“attributes” using the traditional OOP terminology)
related to the object in use.
In such a context, objects deal with objects: e.g. a
queue is an object that contains elements that are
modeled as objects as well.
Furthermore, objects can be easily and visually
linked each other using “arrows” (see Fig. 2). Each

arrow represents the object which is passed
between two other objects that work on it.
The power of this approach is considerably evident
with the growth of complexity of the objects
involved. Indeed, using simple objects such as
queues, simple machines or branches, DEOS
resembles tools such as Arena®, that do provide
visual simulation but not object-oriented features.
Nevertheless, when dealing with real world models
involving very complex objects - both in terms of
objects that model machines and objects under
processing - the superiority of the object-oriented
approach is evident. Each box, indeed, represents
an object (even very complex ones) and different
objects of the same type (i.e. different instances of a
common class) can be modeled and specialized, if
necessary, simply changing their attributes.
Besides, objects are connected each other so that
objects can flow through them. A change in the
layout of a manufacturing system modeled with
DEOS, for instance, can be easily modeled varying
properties, editing connections and inserting other
objects. Such an issue could require a relevant
coding effort using traditional process-oriented
simulation tools.
Finally, information flow through objects, objects
generate events and other objects respond to these
events. Using these features, a very easy
implementation of message passing issues is
achieved.
A basic library of simulation objects has been
implemented in order to show some of the
potentialities of the DEOS simulation environment.
Here follows a brief description of these classes:
• TCreator – simulates the arrival of entities

within the analyzed system according to a
probability distribution

• TDestroyer – simulates the exit of entities
from the modeled system

• TQueue – models a FIFO queue containing
TEntity objects; the capacity of the queue can
be dynamically specified by the designer

• TIncrementer – models a single-input
single-output machine that receives a TNumber
object, increases its value of a user-defined
delta and makes it available after a certain
user-defined delay; this class may be used to
implement generic single-input single-output
machines that process entities for a given time

• TBranch – models a single-input
double-output machine encapsulating some
user-defined logic to redirect the objects in
input towards only one of the two outputs

• TNumber – unlike previous classes (that are
inherited from TResource), this class descends
from TEntity and is characterized by a Value
numeric attribute. This class shows how any
DEOS class can be specialized to manage
entities of any kind and to have a consequent
behavior

The design tool also provides the possibility to
gather specialized parameters for each object in
order to allow a statistical analysis of the
simulations performed. Each simulation object,
indeed, can be configured so that it keeps memory,
while the simulations are executed, of certain
parameters that are relevant for the kind of object
considered. The information logged may be
displayed and exported as an ASCII text file for
further processing with third-party spreadsheet
applications such as MS Excel® or Star Office
Calc®. Nevertheless, a visualization software has
also been implemented that parses the text files
created and automatically builds charts in order to
show the statistics related to each simulation object
both grouping them by parameter or considering
individually each parameter in any replication
executed (see Fig. 3).

Fig. 2 – Connecting objects

Fig. 1 – Object inspectorFig. 1 – Object inspector

Fig. 2 – Connecting objects

3. Extending DEOS
DEOS provides a class library that allows software
developers to extend the simulation environment
defining new classes to model new objects that
operate within the pre-existent environment and
co-operate with other existing objects. Developers
do not need to take explicitly care of
synchronization issues related to the scheduling of
events in the simulation timeline.
The classes provided to achieve such an abstraction
can be grouped into three main areas:
• classes used to manage events
• classes that implement the timeline structure
• classes aimed at the description of simulation

entities
Events are a main feature in any simulation tool and
especially when dealing with discrete events
models. Actually, in discrete events simulations, it
is necessary to know the very instant when each
event will occur within the timeline. The base class
for events management is called TSimulationEvent
and contains the information about the time when
the event is to occur. In fact, a certain event may be
generated before another one which has to occur
first. It is up to the timeline structure, and therefore
to the class that implements it, to process the events
respecting the correct sequence.
The timeline structure allows the management and
the execution of events according to a well-defined
chronological sequence. It can be seen and modeled
as a priority queue, where items, though inserted in
any order, are always extracted following a certain
parameter – in this case the time parameter. The

timeline structure is provided by the DEOS class
library through the TTimeLine class.
The classes needed to model simulation entities are
all derived from a common ancestor - the
TZSimulationObject base class. Each object
involved in the simulation is linked to the timeline
that manages the simulation through the Timeline
attribute.
Several classes have been derived from the above
mentioned basic classes in order to provide a
functional simulation environment for the design
tool.
Two important classes derived from
TSimulationEvent using inheritance are
TStartWorkEvent and TEndWorkEvent. These
classes (see Fig. 4) extend the basic
TSimulationEvent class in order to provide a model
of events that occur when some resource starts
working and when it completes its own job,
keeping track of the resources involved in the
accomplishment of the job.
The TEntity and TResource classes are inherited
from TSimulationObject (see Fig. 5) and provide
the abstraction to model the entities worked or
processed by the resources involved in the
simulation.
The TResource class has been designed in order to
allow a black-box modeling of any machine with
one or more inputs and outputs. When inheriting a
specialized type of resource it is necessary to
specialize all of its methods so that the new class
behaves coherently with the simulation
environment and implements the characteristics of
the modeled resource. In particular, the behavior of
a generic object derived from TResource should
keep to the following scheme:
• a resource cannot work until its WorkRequest

method is called by one of the input resources
• if the resource can execute the work-request,

two events have to be generated and inserted
into the timeline: a start-work event
immediately after the work-request has been
accepted and an end-work event some time
after according to the particular behavior of the
resource (that is the task of the GetJobTime
method and Expression attributes)

• at the proper instant, the scheduled start-work
and end-work event will invoke the Work and
EndWork methods; the latter will then call the
WorkRequest method of the output resources
and then the NextFree method of every input
resource connected in order to communicate its
availability for further jobs

• the entity object worked by the resource is
made available to other resources through the
GetOutput method

Fig. 3 – Statistic charts

4. The underlying architecture
The class library presented in the previous section
can be used to build simulation models and to allow
the execution of simulations. In order to make new
classes available through the visual interface of the
design tool, it is necessary to specialize a few
classes that have been developed for this purpose.
These classes are designed to perform the following
tasks:
• allowing to visually set up resources, entities

and simulation parameters using the facilities
of the MS Windows® OS

• management of statistics through both
on-screen presentation and text file exporting

• input/output of simulation models layouts
from/to file

For each new resource class created, an heir of
TClassManager has to be implemented to manage

the particular data structures needed by the
resource, such as those involved in its behavior and
those used to process the statistical information
generated during the simulations.
The following classes (see Fig. 6) are also used by
the design tool application:
• TSimGraphicControl – is the base class for

resources and connectors painted on-screen
• TsimulationForm – inherits from TForm and

manages objects of TSimGraphicControl type
and allows their selection and displacement
both individually and grouped, their deletion
and the interconnection between a class
manager and the object inspector

• TClassBox – inherits from
TSimGraphicControl and manages the drawing
of rectangles on the TSimulationForm; these
are the graphical representation of resources.
The class box may be moved or deleted and it

Fig. 4 – TSimulationEvent hierarchy

Fig. 5 – TSimulationObject hierarchy

TZEndWorkEvent

Owner : *TZResource

TZEndWorkEvent()

TZEndWorkEvent

Owner : *TZResource

TZEndWorkEvent()

TZSimulationEvent

Name : AnsiString
Time : double

TZSimulationEvent()
ProcessEvent()

TZSimulationEvent

Name : AnsiString
Time : double

TZSimulationEvent()
ProcessEvent()

TZStartWorkEvent

Owner : *TZResource
Customer : *TZResource

TZEndWorkEvent()

TZStartWorkEvent

Owner : *TZResource
Customer : *TZResource

TZEndWorkEvent()

TZEntity

Type : AnsiString
CreationTime : int

TZEntity()

TZEntity

Type : AnsiString
CreationTime : int

TZEntity()

TZSimulationObject

ClassType : AnsiString
Timeline : *TZTimeline

TZSimulationObject()

TZSimulationObject

ClassType : AnsiString
Timeline : *TZTimeline

TZSimulationObject()

TZResource

Name : AnsiString
Inputs : vector<TZResource *>
Outputs : vector<TZResource *>
WorkDelayType : TWorkDelayType
Expression : AnsiString
NumberOfEntities : vector<double>
EndWorkingTime : double
WorkingTime : double
OccupationTimes : vector<TimeValue *>

Input()
Output()
GetOutput()
Work()
EndWork()
WorkRequest()
NextFree()
TZResource()
GetJobTime()

TZResource

Name : AnsiString
Inputs : vector<TZResource *>
Outputs : vector<TZResource *>
WorkDelayType : TWorkDelayType
Expression : AnsiString
NumberOfEntities : vector<double>
EndWorkingTime : double
WorkingTime : double
OccupationTimes : vector<TimeValue *>

Input()
Output()
GetOutput()
Work()
EndWork()
WorkRequest()
NextFree()
TZResource()
GetJobTime()

is possible to display and manage the
properties of the resource through the object
inspector

• TClassConnector – descends from
TSimGraphicControl and its task is to connect
two resources each other with a certain
direction; a connector may be deleted but its
movement is determined by the positions of the
two resources that it connects

• TobjectInspector – is linked with
TSimulationForm objects and with class
managers in order to display the attributes of a
certain resource. It contains two grids, one
needed to display attributes and the other one
used to show the simulation parameters (see
Fig. 1). Besides it also contains two combo-
boxes that contain respectively the list of
objects present on the active simulation form
and the list of values available for certain
resource parameters (e.g. when it is possible to
chose among several probability distributions)

5. Conclusions and future issues
The provided implementation of DEOS, though still
in its early stage of development, shows many of
DEOS potentialities.
The design tool, in spite of the few types of objects
provided, points out all the versatility and usability
of a visual tool, as well as the effectiveness and
benefits of the graphical statistical analysis tools
developed. This tool may be seen as somehow
"complete", though some work is still to be done,
for instance with regard to import/export and
printing issues.
The class library has been designed and developed
in order to make DEOS as extensible as possible.
Nevertheless, the implementation of new kinds of
objects requires a thorough knowledge of both
standard ANSI C++ [Kal99] language and Borland/

Inprise C++ Builder® [Hol00][Rei99] development
tool. A major effort will be made in future versions
in order to grant a plug-in structure to DEOS, so
that new classes (i.e. kinds of objects) might be
defined and implemented using other languages
and/or development tools and dynamically included
within the design tool at run-time.
Another major issue that might be usefully
developed in future versions of DEOS is its use as a
real-time monitoring and control system. The
complexity due to interfacing PCs with sensors and
machines can be easily hidden to final users
implementing suitable classes. These classes should
manage interfacing issues and provide designers
with a homogeneous environment. In such a
context, representations of real objects connected to
the PC would coexist with virtual objects that
enable the user, or the system itself, to react to
events generated by the monitored system.

Acknowledgements

This work has been partially funded by Ministero
dell'Università e della Ricerca Scientifica e
Tecnologica MURST, the National Research
Council of Italy CNR.

References

Aes SIMPLE++ reference manual
(Aesop GmbH Stuttgart)

Boo94 Booch
Object-Oriented Analysis and Design
with Application
(Benjamin/ Cummings 1994)

Cac92 MODSIM, The Language for Object-
Oriented Programming Reference
Manual

Fig. 6 – Support classes

TClassBoxTClassBox TObjectInspectorTObjectInspector

TClassConnectorTClassConnector TSimulationFormTSimulationForm

(CACI Products 1992)
Cub97 Cubert, R. M., P. A. Fishwick

MOOSE: An Object-Oriented Multi-
modeling and Simulation Application
Framework
Submitted to Simulation, June 1997

Hlu99 V. Hlupic, R.J. Paul
Guidelines for Selection of
Manufacturing Simulation Software
IIE Transaction, vol. 31 (1999), 21-29.

Hol00 Jarrod Hollingworth, Dan Butterfield, Bob
Swart, Jamie Allsop
C++ Builder 5 Developer's Guide
(Trade Paper, 2000)

Kal99 Danny Kalev
Ansi/Iso C++ Professional Programmer's
Handbook (Que Professional Series)
(Que, 1999)

Mac95 R. D. Macredie and R. J. Paul
Simulation modeling in manufacturing
system design: an overview
International Journal of Manufacturing
System Design, vol. 2, n. 3, (1995), 233-247

Omn OMNeT++ Discrete Event Simulation
System
http://www.hit.bme.hu/phd/vargaa/omnetpp
.htm

Pav99 Russell Pavlicek, Robin Miller
Embracing Insanity: Open Source
Software Development
(Sams Pub.,1999)

Peg95 C.D. Pegden, R.E. Shannon, R.P. Sadowski
Introduction to Simulation Using SIMAN
(McGraw-Hill, 1995).

Rei99 Kent Reisdorph, Charlie Calvert
C++ Builder 4 Unleashed
(Sams Pub.,1999)

